3,219 research outputs found

    Type VII Collagen Expression in the Human Vitreoretinal Interface, Corpora Amylacea and Inner Retinal Layers

    Get PDF
    Type VII collagen, as a major component of anchoring fibrils found at basement membrane zones, is crucial in anchoring epithelial tissue layers to their underlying stroma. Recently, type VII collagen was discovered in the inner human retina by means of immunohistochemistry, while proteomic investigations demonstrated type VII collagen at the vitreoretinal interface of chicken. Because of its potential anchoring function at the vitreoretinal interface, we further assessed the presence of type VII collagen at this site. We evaluated the vitreoretinal interface of human donor eyes by means of immunohistochemistry, confocal microscopy, immunoelectron microscopy, and Western blotting. Firstly, type VII collagen was detected alongside vitreous fibers6 at the vitreoretinal interface. Because of its known anchoring function, it is likely that type VII collagen is involved in vitreoretinal attachment. Secondly, type VII collagen was found within cytoplasmic vesicles of inner retinal cells. These cells resided most frequently in the ganglion cell layer and inner plexiform layer. Thirdly, type VII collagen was found in astrocytic cytoplasmic inclusions, known as corpora amylacea. The intraretinal presence of type VII collagen was confirmed by Western blotting of homogenized retinal preparations. These data add to the understanding of vitreoretinal attachment, which is important for a better comprehension of common vitreoretinal attachment pathologies

    High Frequency Spontaneous Deletions within the IcaADBC Operon of Clinical Staphylococcus epidermidis Isolates.

    Get PDF
    Staphylococcus epidermidis has been shown to undergo a phase variation correlating with expression of the icaADBC operon which contributes to biofilm formation. Biofilm formation of Enterococcus faecalis is related to heterogeneity in electrophoretic mobility. Here the relationship between phase variants of clinical isolates of S. epidermidis, icaADBC presence and electrophoretic mobility distributions is investigated. Of 105 S. epidermidis clinical isolates, 5 showed phase variation on Congo Red agar plate. Biofilm forming capability of the blackcolonies and inability of the red colonies were confirmed using a microtiter plate assay and confocal laser scanning microscopy. Upon analysis of electrophoretic mobility distributions, the black colonies displayed heterogeneity at pH 2 which was absent in the red colonies of the same strain. Surprisingly, it was shown that in all red colonies had lost the icaADBC genes. Determination of gene copy number using Real Time PCR targeting icaA showed reduction of gene copy within a culture with phase variation. In conclusion, using three fundamentally different approaches phase variation of the five clinical isolates was observed. Variants appeared through loss of icaA and icaC gens. To our knowledge this is the first report indicating S. epidermidis strains irreversible switching from biofilm + to biofilm – phenotype by deletion of ica genes. Key words: deletion, ica genes, Staphylococcus epidermidis, IcaADBC opero

    Comparison of 2D and 3D calculation of left ventricular torsion as circumferential-longitudinal shear angle using cardiovascular magnetic resonance tagging

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To compare left ventricular (LV) torsion represented as the circumferential-longitudinal (CL) shear angle between 2D and 3D quantification, using cardiovascular magnetic resonance (CMR).</p> <p>Methods</p> <p>CMR tagging was performed in six healthy volunteers. From this, LV torsion was calculated using a 2D and a 3D method. The cross-correlation between both methods was evaluated and comparisons were made using Bland-Altman analysis.</p> <p>Results</p> <p>The cross-correlation between the curves was <it>r</it><sup>2 </sup>= 0.97 ± 0.02. No significant time-delay was observed between the curves. Bland-Altman analysis revealed a significant positive linear relationship between the difference and the average value of both analysis methods, with the 2D results showing larger values than the 3D. The difference between both methods can be explained by the definition of the 2D method.</p> <p>Conclusion</p> <p>LV torsion represented as CL shear quantified by the 2D and 3D analysis methods are strongly related. Therefore, it is suggested to use the faster 2D method for torsion calculation.</p
    • …
    corecore