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Addicted individuals are highly susceptible to relapse when exposed to drug-associated
conditioned stimuli (CSs; “drug cues”) even after extensive periods of abstinence.
Until recently, these maladaptive emotional drug memories were believed to be
permanent and resistant to change. The rediscovery of the phenomenon of memory
reconsolidation—by which retrieval of the memory can, under certain conditions,
destabilize the previously stable memory before it restabilizes in its new, updated
form—has led to the hypothesis that it may be possible to disrupt the strong maladaptive
drug-memories that trigger a relapse. Furthermore, recent work has suggested that
extinction training “within the reconsolidation window” may lead to a long-term reduction
in relapse without the requirement for pharmacological amnestic agents. However, this
so-called “retrieval-extinction” effect has been inconsistently observed in the literature,
leading some to speculate that rather than reflecting memory updating, it may be the
product of facilitation of extinction. In this mini review article, we will focus on factors
that might be responsible for the retrieval-extinction effects on preventing drug-seeking
relapse and how inter-individual differences may influence this therapeutically promising
effect. A better understanding of the psychological and neurobiological mechanisms
underpinning the “retrieval-extinction” paradigm, and individual differences in boundary
conditions, should provide insights with the potential to optimize the translation of
“retrieval-extinction” to clinical populations.

Keywords: memory reconsolidation, extinction, retrieval-extinction, addiction, rat

INTRODUCTION

Addiction is a chronic, relapsing disorder characterized by loss of control over drug use, high
motivation for drug, and persistence in drug use despite adverse consequences (American
Psychiatric Association, 2013). Those who become addicted show a high propensity to relapse
following periods of abstinence. Re-exposure to previously drug-associated cues is one major
precipitant of relapse: people, places, and paraphernalia repeatedly paired with drugs become
conditioned to the drug high in a pavlovian manner, and these pavlovian conditioned stimuli (CSs)
subsequently induce relapse (de Wit and Stewart, 1981).

Drug-associated CSs influence relapse through at least three psychologically and
neurobiologically dissociable processes (Milton and Everitt, 2010). Until recently, these maladaptive
CS-drug memories were believed to be permanent and resistant to change. However, following the
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rediscovery of memory reconsolidation (Nader et al., 2000)
interest grew in exploiting this process to develop new forms
of treatment for mental health disorders including addiction.
One such strategy would be pharmacological disruption of drug
memory reconsolidation with the administration of amnestic
agents (for review, see Milton and Everitt, 2010). Here, we
focus on an alternative strategy aiming to capitalize on the
hypothesized updating function of reconsolidation; reactivating
a memory and introducing ‘‘CS-no US’’ information through
the procedure known as ‘‘extinction within the reconsolidation
window’’ or ‘‘retrieval-extinction.’’ Due to the relative paucity of
drug memory retrieval-extinction studies in the literature, we will
extrapolate general principles from retrieval-extinction studies
of both fear and drug memories, focusing on the influence of
individual differences.

RETRIEVAL-EXTINCTION AS A
NON-PHARMACOLOGICAL MEMORY
INTERFERENCE METHOD

A potential limitation of pharmacological approaches to target
memory reconsolidation is the requirement for amnestic agents.
Although drugs such as propranolol, the β-adrenergic receptor
antagonist used in many reconsolidation studies, are safe to
use in humans, many amnestic agents (e.g., protein synthesis
inhibitors) are less well-tolerated. Consequently, there has
been great interest in capitalizing on the hypothesized role of
reconsolidation in memory updating (Lee, 2009) with the use of
‘‘retrieval-extinction’’ procedures.

‘‘Retrieval-extinction’’ was first described for pavlovian
fear memories, and involves reactivating the memory in a
brief re-exposure session, followed by a separate prolonged
re-exposure/extinction session after a short delay (typically
10–60 min, but theoretically within 3–4 h of the opening of the
‘‘reconsolidation window’’). The retrieval-extinction procedure
persistently attenuates recovery of fear memories in both rats
(Monfils et al., 2009) and humans (Schiller et al., 2010), although
this has not been universally replicated (e.g., see Luyten and
Beckers, 2017).

Shortly after the discovery of retrieval-extinction, a seminal
article (Xue et al., 2012) showed that retrieval-extinction could
reduce drug-seeking in rodents trained on cocaine- or opiate-
conditioned place preference (CPP) or intravenous cocaine self-
administration. Furthermore, retrieval-extinction was shown
in the same study to reduce craving elicited by heroin CSs
in human outpatient heroin abusers. This has a potentially
profound impact on addiction treatment, as a relatively minor
adjustment to prolonged exposure therapy greatly improved
treatment outcomes. Consequently, there has been intense
research interest in retrieval-extinction from both preclinical and
clinical addiction researchers.

Reductions in CPP following the retrieval-extinction
procedure have been replicated with cocaine (Sartor and Aston-
Jones, 2014) and morphine (Ma et al., 2012). Retrieval-extinction
also reduces alcohol-seeking in rats (Millan et al., 2013; Willcocks
and McNally, 2014; Cofresí et al., 2017) and nicotine-seeking

in human smokers (Germeroth et al., 2017). However, despite
its efficacy in reducing drug-seeking, there remains a lack of
definitive evidence that retrieval-extinction for drug memories
depends critically upon memory-updating and reconsolidation
mechanisms, and not the facilitation of extinction. In several
studies where retrieval-extinction effectively reduced one
measure of drug-seeking, it was ineffective at reducing other
measures: it did not prevent spontaneous recovery of morphine
CPP 4 weeks post-intervention (Ma et al., 2012) and it did
not retard the reacquisition of alcohol-seeking, as would be
expected if the original cue-alcohol memory had been erased
(Willcocks and McNally, 2014). Furthermore, the finding
that extinction training prior to memory reactivation reduces
subsequent alcohol-seeking contradicts the hypothesis that
memory destabilization is critical for the retrieval-extinction
effect (Millan et al., 2013). This is consistent with our previous
report that drugs that block fear memory destabilization do not
prevent the reduction in fear produced by the retrieval-extinction
procedure (Cahill et al., 2019).

However, it may be premature to conclude that retrieval-
extinction simply represents the facilitation of extinction that
does not engage in memory reconsolidation mechanisms. Some
molecular evidence suggests that retrieval-extinction recruits
immediate early genes associated with memory reconsolidation,
at least for fear memories (Tedesco et al., 2014) and that
antagonism of L-type voltage-gated calcium channels, which
are necessary for memory destabilization (Suzuki et al., 2008)
prevents the reduction in subsequent responding normally
observed following retrieval-extinction for a food-associated
CS (Flavell et al., 2011). These apparently conflicting findings
are difficult to reconcile, but we propose that individual
differences may determine whether reconsolidation or extinction
mechanisms are engaged under a given set of experimental
conditions. In turn, this may account for the inconsistent reports
of retrieval-extinction in the literature.

THE INFLUENCE OF INDIVIDUAL
DIFFERENCES ON THE EFFICACY
OF RETRIEVAL-EXTINCTION

Individual differences pose a potential challenge to the
translation of retrieval-extinction to the clinical situation. A
relatively understudied phenomenon in retrieval-extinction,
individual differences in the acquisition of extinction influence
the efficacy of retrieval-extinction for preventing the recovery of
fear memories (Shumake et al., 2018) and in turn, the capacity
for fear extinction learning correlates with CO2 reactivity and
orexin expression in the lateral hypothalamus (Monfils et al.,
2019). To date, there have been no studies examining the
impact of these mechanisms on the retrieval-extinction of
appetitive memories, but drawing on findings from the fear
literature, we consider three factors that are likely to influence
retrieval-extinction for drug memories: individual differences
in reconsolidation boundary conditions, the attribution of
incentive value to appetitive cues, and the influence of stress on
mnemonic processes.
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Individual Differences in Boundary
Conditions
Not all instances of memory retrieval lead to memory
reconsolidation; instead, there are hypothesized ‘‘boundary
conditions’’ that determine whether a retrieved memory
destabilizes and reconsolidates. There is extensive evidence that
memory destabilization depends upon a ‘‘mismatch’’ between
what is expected and what actually occurs, formalized as
‘‘prediction error’’ (Pedreira and Maldonado, 2003; Pedreira
et al., 2004; Sevenster et al., 2012, 2013, 2014; though see
Yang et al., 2019, for a discussion of whether uncertainty may
also induce memory destabilization). The relationship between
prediction error and memory lability is not monotonic, however,
as extensive prediction error—for example, during extended
periods of reinforcer omission—leads not to reconsolidation
of the original memory, but rather the consolidation of
new extinction memory, and thus extinction learning. The
relationship between reconsolidation and extinction has been
extensively investigated for fear memories, with converging
evidence showing that the two mnemonic processes are separated
by a ‘‘limbo’’ period in which the original memory becomes
again insensitive to disruption (Flavell and Lee, 2013; Merlo
et al., 2014, 2018; Sevenster et al., 2014; Cassini et al., 2017). To
date, this has been studied at the population level with strong
conditioning parameters, which may mask individual variability.
For drug memories, where individual drug use histories show
greater variability, it may be hypothesized that the extent of
prediction error required to engage reconsolidation, limbo and
extinction mechanisms may differ between individuals. Thus,
considering the widely accepted boundary conditions of memory
strength and age (Suzuki et al., 2004; Kwak et al., 2012), the extent
of re-exposure required for reactivating a cue-drug memory may
individually vary.

Individual Differences in Attribution of
Incentive Value to Cues
An increasingly large body of research has characterized
how individual differences in the attribution of incentive
value to drug-associated CSs influence subsequent drug
self-administration and relapse (see Robinson et al., 2018, for
review). There is variation in the degree to which individuals are
attracted to discrete CSs associated with reward (‘‘sign-tracking’’)
as compared to the location of the reward itself (‘‘goal-tracking’’),
usually measured by a pavlovian conditioned approach using
an autoshaping procedure (Meyer et al., 2012). These behaviors
are hypothesized to reflect endophenotypes correlated with
differences in dopaminergic signaling within the motivational
circuitry (Flagel et al., 2011) and differential reliance on model-
based (goal-directed) and model-free (habitual) motivational
systems (Lesaint et al., 2015). There is also evidence that
goal-trackers condition more readily than sign-trackers to
contextual cues predictive of reinforcement (Morrow et al., 2011;
Saunders et al., 2014), although this has not been universally
replicated (Vousden et al., in press).

Sign-trackers and goal-trackers appear to learn differentially
about discrete and contextual cues. This may influence whether

they perceive the retrieval-extinction procedure to be the same
as the previous learning experience (favoring reconsolidation
updating) or as a different learning experience (favoring the
formation of a new extinction memory). We speculate that
sign-trackers and goal-trackers may attribute the retrieval-
extinction experience to different ‘‘latent causes’’ (Dunsmoor
et al., 2015). Considering that sign-trackers also appear to
be resistant to pavlovian extinction (Ahrens et al., 2016),
the relative paucity of studies of the influence of these
endophenotypes on retrieval-extinction is surprising. Those
that have been conducted used a slightly different procedure,
classifying rats as ‘‘orienters’’ and ‘‘non-orienters’’ to pavlovian
CSs, which are broadly similar to sign-tracking and goal-
tracking. Both groups showed reduced spontaneous recovery of
fear memory (Olshavsky et al., 2013), but when the appetitive
CS-reward memory was targeted for retrieval-extinction, only
the orienters/sign-trackers showed reduced appetitive responses
(Olshavsky et al., 2014). This may suggest a shift in the
boundaries between reconsolidation, limbo and extinction,
such that the same re-exposure session may have induced
reconsolidation-based updating in the sign-trackers, but limbo or
extinction in the goal-trackers, reflecting the increased sensitivity
of goal-trackers to contextual cues (including interoceptive,
temporal cues) that distinguish the retrieval session from
previous learning.

Individual Differences in the Effects of
Stress on Extinction
The discrepancies within and between studies of ‘‘retrieval-
extinction’’ could potentially be explained by different individual
stress levels during either the reconsolidation or the extinction
session(s), whether stress is induced through re-exposure to an
aversive CS or by frustration by the omission of an appetitive
drug reward (e.g., Ginsburg and Lamb, 2018). The effect of
stress is usually to impair reconsolidation, as has been reviewed
previously (Akirav and Maroun, 2013), so here we focus on the
effects of stress on extinction.

The relationship between stress and extinction is complicated,
depending critically upon the degree and timing of stress relative
to extinction learning and retrieval. Mimicking stress through
the administration of low doses of exogenous glucocorticoids
enhances, whilst high doses impair, consolidation (Roozendaal,
2003). This depends upon the activation of glucocorticoid
receptors in the amygdala, which modulates both the acquisition
and consolidation of fear extinction (Yang et al., 2006) in an
NMDA receptor-dependent manner (Yang et al., 2007). These
dose effects of glucocorticoids depend critically on the receptors
activated, with glucocorticoid receptors and mineralocorticoid
receptors having differential roles in contextual fear extinction
(Ninomiya et al., 2010; Blundell et al., 2011).

Timing of stress relative to extinction learning or retrieval
determines whether stress enhances or impairs the behavioral
expression of the extinction memory, as articulated in the Stress
Timing affects Relapse (STaR) model (Meir Drexler et al., 2019).
This model proposes that stress or glucocorticoid administration
prior to extinction learning increases consolidation of the
extinction memory such that it is less context-specific
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(de Quervain et al., 2011), and that post-extinction stress
or glucocorticoid administration also enhances its consolidation,
but in a context-dependent manner. By contrast, stress or
glucocorticoid administration immediately before an extinction
retrieval test impairs extinction retrieval, leading to increased
fear. However, though the STaR model (Meir Drexler et al.,
2019) is well supported by evidence from human studies
of contextual fear, the evidence from discrete fear learning
(summarized in Table 1) is not always consistent with stress
enhancing extinction consolidation. The studies presented here
show generally that stress, either behaviorally induced or by
corticosterone administration, has a neutral or even detrimental
effect on the distinct phases of extinction and retrieval. However,
in the acquisition or consolidation of extinction in contextual
fear, a few studies show enhancing potential. Importantly, for
the extinction of maladaptive appetitive drug associations, no
studies indicate enhancing the therapeutic potential of stress.
The contrast of stress effects between different types of memory
likely reflect the different effects of stress hormones in the
hippocampus, which is required for contextual fear learning,
and the amygdala, required for both contextual and discrete fear
learning (McEwen et al., 2016).

To our best knowledge, the effects of stress have not been
systemically investigated in the context of retrieval-extinction.
Based on the STaR model (Meir Drexler et al., 2019) it may
be possible to optimize retrieval-extinction using well-timed
glucocorticoid administration. However, based on Table 1, we
would only expect this to work for contextual fear extinction,
and to have a limited or even detrimental effect for appetitive
memories, regardless of whether retrieval-extinction is mediated
by an extinction or reconsolidation mechanism. Importantly,
differences in stress state would be predicted to affect the
acquisition, consolidation, and retrieval of extinction, thus
potentially explaining the large variation between retrieval-
extinction studies.

OPTIMIZING RETRIEVAL-EXTINCTION
FOR THE DISRUPTION OF DRUG
MEMORIES

Considering the influence of these individual differences
on retrieval-extinction, how might the procedure be
individually optimized?

Optimizing Memory Reactivation
Reconsolidation deficits are highly selective to the reactivated
memory (Dębiec et al., 2006; Doyère et al., 2007), which could
limit the efficacy of reactivation based on the presentation of
CSs. Furthermore, individual differences exist in attention and
engagement with CSs (Meyer et al., 2012), which could account
for differences in the efficacy of retrieval-extinction, such as those
seen with appetitive memories (Olshavsky et al., 2014).

US presentation can also be used to reactivate memories.
It was first shown in studies of fear memory that unsignalled
re-exposure to footshock could destabilize the fear memory
and make it susceptible to disruption with protein synthesis
inhibition (Dębiec et al., 2010). Similarly, re-exposure to

the US induced susceptibility to retrieval-extinction, and led
to reductions in fear to all CSs associated with the US,
rather than individual CS-US associations (Liu et al., 2014).
US-based reactivation has also been shown to extensively reduce
reactivation-induced CREB expression, compared to CS-based
reactivation (Huang et al., 2017).

A similar US-based reactivation approach has been used
in studies of drug memory reconsolidation. In rats extensively
trained to self-administer cocaine, reactivation of the drug
memory through experimenter-administered injections
of cocaine, followed by drug memory extinction, reduced
reinstatement, spontaneous recovery and renewal (Luo et al.,
2015). Importantly, the retrieval-extinction effect was also
observed when instead of cocaine, the stimulant methylphenidate
was administered. As noted by the authors (Luo et al., 2015), this
overcomes the difficult ethical issue of administering an illegal
drug to a patient who is trying to maintain abstinence. However,
these findings do raise questions regarding the mechanism by
which US-based reactivation occurs. It may reactivate a ‘‘US
engram’’ in the brain, propagating destabilization along the
network of associated CSs. Alternatively, US exposure could
lead to experiencing interoceptive cues that reactivate the
drug memory which may account for the increased efficacy of
US-based reactivation procedures. A specific test of the latter
hypothesis would be to determine whether drug isoforms that do
not cross the blood-brain-barrier—and so could only produce
central effects through the detection of peripheral interoceptive
cues—would be as effective in reactivating the memory as drugs
that do cross the blood-brain-barrier. To our knowledge, this
remains to be investigated.

Optimizing Extinction
The fact that there are no standardized procedures to
destabilize memory makes the interpretation of studies failing
to replicate retrieval-extinction difficult. Although memory
destabilization—at least for pavlovian memories—is thought to
depend on inducing a ‘‘violation of expectations’’ or ‘‘prediction
error’’ (Pedreira et al., 2004; Sevenster et al., 2013, 2014), it
is widely accepted that the relationship between prediction
error and memory destabilization is complex. As noted above,
re-exposure to a single previously fear-associated CS will
induce memory reconsolidation, but greater re-exposure (with
more prediction error) leaves the original memory intact and
instead promotes the consolidation of an extinction memory
after a ‘‘limbo’’ period (Lee et al., 2006; Merlo et al., 2014,
2018). Therefore, the relationship between prediction error
and memory destabilization is not linear, leading some to
hypothesize that destabilization may instead be driven by
the attribution of an unexpected experience to the same
underlying ‘‘latent cause’’ as has been experienced in the
original consolidation of the memory (Dunsmoor et al., 2015;
Gershman et al., 2017). The difficulty in empirically determining
whether an experience is attributed to the same or different
latent cause—which could also differ between individuals—leads
us to hypothesize that the failures to replicate the retrieval-
extinction effect may be due to engaging the facilitation of
extinction, rather than destabilization of the original memory.
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TABLE 1 | Modulation of different phases of extinction by behavioral stress, glucocorticoid administration, and secondary interventions.

Type of memory Mnemonic phase Effect Method of
stress induction

References Secondary
intervention

Total effect References

CS-US fear conditioning and extinction Acquisition or
consolidation of
extinction

Impaired Behavioral Izquierdo et al. (2006),
Akirav and Maroun (2007),
Yamamoto et al. (2008)2,
Akirav et al. (2009)1, Farrell
et al. (2010), Knox et al.
(2012b), Maroun et al.
(2013), Keller et al. (2015)
and Sawamura et al. (2016)

Dexamethasone
Metyrapone
Infralimbic lesion
Diazepam
D-cycloserine
D-cycloserine

Rescued
Exacerbated
Impaired
Rescued
No effect
Rescued

Sawamura et al. (2016)
Keller et al. (2015)
Farrell et al. (2010)
Akirav and Maroun (2007)
Akirav et al. (2009)1

Yamamoto et al. (2008)2

No effect Behavioral Miracle et al. (2006); Garcia
et al. (2008); Wilber et al.
(2011) and Knox et al.
(2012a)

CORT Wang et al. (2014)

Retrieval of
extinction

Impaired Behavioral Miracle et al. (2006), Garcia
et al. (2008), Farrell et al.
(2010) Wilber et al. (2011),
Knox et al. (2012a),
Deschaux et al. (2013),
Maroun et al. (2013) and
Xing et al. (2014)

Fluoxetine
Infralimbic lesion

Rescued
Rescued

Deschaux et al. (2013)3

Farrell et al. (2010)

No effect CORT Wang et al. (2014)

Context-fear conditioning and extinction Acquisition or
consolidation of
extinction

Impaired Behavioral Akirav and Maroun (2007),
Yamamoto et al. (2008)2

and Akirav et al. (2009)

D-cycloserine

Diazepam

Rescued

Rescued

Yamamoto et al. (2008)2

and Akirav et al. (2009)
Akirav and Maroun (2007)

CORT Gourley et al. (2009) Mifepristone Mimicked Gourley et al. (2009)
No effect Behavioral Knox et al. (2012a)
Enhanced Behavioral Kirby et al. (2013)

CORT Cai et al. (2006), Abrari
et al. (2008) and Blundell
et al. (2011)

(Continued)
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TABLE 1 | Continued

Type of memory Mnemonic phase Effect Method of
stress induction

References Secondary
intervention

Total effect References

Instrumental conditioning for drug reward
and cued extinction

Acquisition or
consolidation of
extinction

No effect Behavioral Eagle et al. (2015) and
Manvich et al. (2016)

Retrieval of
extinction

No effect Behavioral Eagle et al. (2015)4

Enhanced
reinstatement

Behavioral Erb et al. (1998)5, Graf et al.
(2013)6 and Manvich et al.
(2016)4

ADX
ADX + CORT

Rescued
Reinstated

Erb et al. (1998)5 and Graf
et al. (2013)6

Erb et al. (1998)5

CORT Graf et al. (2013)6 Mifepristone No effect Graf et al. (2013)

Abbreviations: ADX, adrenalectomized; CORT, corticosterone. Note that this table includes only rodent studies. Other exclusions consist of: studies that applied the stress before conditioning when this had a significant effect on
conditioning, e.g., studies using early life stress, or when they did not provide any conditioning data as this renders it impossible to conclude on the effects on extinction alone. For the effects on retrieval of extinction as determined by
performance during reinstatement, only studies were included which targeted the stress specifically to the extinction session, and not to the reinstatement session. Also, articles that did not provide controls for stress/CORT induction
were excluded. No articles on retrieval of extinction within contextual fear, nor articles which used CORT to induce stress in instrumental conditioning were found after these exclusions. Specific excluded articles, as it is beyond the scope
of this table: effect of strain in mice (Brinks et al., 2009); diurnal changes in corticosterone (Woodruff et al., 2015); gender (Baran et al., 2009); exposure to novel context (Liu et al., 2015); conditioning using conditioned place preference
(Leão et al., 2009; Taubenfeld et al., 2009; Karimi et al., 2014; Meng et al., 2014; Ebrahimian et al., 2016; Taslimi et al., 2018). The severity of behavioral stress induction, nor CORT dose showed no clear effect and is thus for clarity not
included.
1This study was the only one in the CS-US category where conditioned taste aversion was used to establish the CS-US association. All others used classical cue-fear conditioning, where a fear-related US, typically an electrical shock, is
paired to a CS, typically a tone.
2This study used classical cue-fear conditioning but used only the context for extinction.
3The fluoxetine was given for 21 days after extinction. The behavioral stress consisted of elevated platform prior to retrieval. The decrease in freezing could also be interpreted as an enhancing effect of fluoxetine on the consolidation of
extinction, rather than retrieval, or could be ascribed to the general anxiolytic effects of fluoxetine.
4Reinstatement was not cocaine-primed.
5Reinstatement was cocaine-primed.
6This effect was only observed when animals received a priming dose of cocaine vs. saline prior to the reinstatement test.
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One major challenge in distinguishing between these two
accounts of retrieval-extinction is the reliance on a single
behavioral readout. We have previously argued (Cahill and
Milton, 2019) that corroborating molecular evidence would be
useful in this respect.

Certainly, our own data are more consistent with a
‘‘facilitation of extinction’’ account of retrieval-extinction.
We observed (Cahill et al., 2019) the retrieval-extinction
effect for fear memories despite behavioral manipulations of
prediction error and selective pharmacological blockade of the
D1-subtype of dopamine receptor, which is required for memory
destabilization (Merlo et al., 2015). Furthermore, considering
studies showing facilitation of extinction following exposure to
a novel environment (de Carvalho Myskiw et al., 2013; Liu et al.,
2015), at least some of the published putative retrieval-extinction
effects could be due to the facilitation of learning by a proximal
behavioral experience. This phenomenon, in which novelty
exposure facilitates subsequent learning, is known as ‘‘behavioral
tagging’’ (Moncada and Viola, 2007; Moncada et al., 2011).
One test of the ‘‘facilitation of extinction’’ account of retrieval-
extinction would be to expose animals to a novel context prior to
extinction training, rather than a memory reactivation session; if
the ‘‘retrieval-extinction’’ effect persists despite a lack of memory
reactivation, this would cast doubt on the reconsolidation-based
account of the phenomenon.

Determining whether retrieval-extinction depends upon
reconsolidation or extinction mechanisms is of great potential
importance in optimizing this therapeutic strategy. For example,
if dependent primarily on extinction mechanisms, then it
may be possible to facilitate retrieval-extinction further with
the administration of drugs such as the glutamate receptor
partial agonist D-cycloserine (Das and Kamboj, 2012).
However, the use of drugs to enhance retrieval–extinction
may reduce the non-pharmacological appeal of the intervention.
Alternatively, if individual differences determine whether

reconsolidation-update or extinction mechanisms are engaged
by the retrieval-extinction procedure, then identification of
these differences—for example, by classifying individuals
as sign-trackers or goal-trackers, or determining stress
reactivity—could be used to optimize the retrieval-extinction
procedure by targeting the dominant mnemonic process in
each individual.

CONCLUSIONS

Although the mechanisms underlying retrieval-extinction
remain unclear, and retrieval-extinction has not been
universally replicated, this process has great potential for
the treatment of drug addiction. Understanding the contribution
of individual differences to the boundary conditions underlying
reconsolidation, limbo, and extinction, and how these interact
with factors such as the attribution of incentive value to
appetitive stimuli and stress, may provide insight into the
apparent inconsistencies in the literature, and guide future
optimization of retrieval-extinction for clinical use.
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