256 research outputs found

    Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality

    Get PDF
    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.Comment: 138 pages, 25 figures, review associated with New Journal of Physics special issue "Focus on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas" (http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Strongly%20Correlated%20Quantum%20Fluids%20-%20from%20Ultracold%20Quantum%20Gases%20to%20QCD%20Plasmas

    Orthogonal polarisation spectral imaging as a new tool for the assessment of antivascular tumour treatment in vivo: a validation study

    Get PDF
    Tumour angiogenesis plays a key role in tumour growth, formation of metastasis, detection and treatment of malignant tumours. Recent investigations provided increasing evidence that quantitative analysis of tumour angiogenesis is an indispensable prerequisite for developing novel treatment strategies such as anti-angiogenic and antivascular treatment options. Therefore, it was our aim to establish and validate a new and versatile imaging technique, that is orthogonal polarisation spectral™ imaging, allowing for non-invasive quantitative imaging of tumour angiogenesis in vivo. Experiments were performed in amelanotic melanoma A-MEL 3 implanted in a transparent dorsal skinfold chamber of the hamster. Starting at day 0 after tumour cell implantation, animals were treated daily with the anti-angiogenic compound SU5416 (25 mg kg bw−1) or vehicle (control) only. Functional vessel density, diameter of microvessels and red blood cell velocity were visualised by both orthogonal polarisation spectral™ imaging and fluorescence microscopy and analysed using a digital image system. The morphological and functional properties of the tumour microvasculature could be clearly identified by orthogonal polarisation spectral™ imaging. Data for functional vessel density correlated excellently with data obtained by fluroescence microscopy (y=0.99x+0.48, r2=0.97, RS=0.98, precision: 8.22 cm−1 and bias: −0.32 cm−1). Correlation parameters for diameter of microvessels and red blood cell velocity were similar (r2=0.97, RS=0.99 and r2=0.93, RS=0.94 for diameter of microvessels and red blood cell velocity, respectively). Treatment with SU5416 reduced tumour angiogenesis. At day 3 and 6 after tumour cell implantation, respectively, functional vessel density was 4.8±2.1 and 87.2±10.2 cm−1 compared to values of control animals of 66.6±10.1 and 147.4±13.2 cm−1, respectively. In addition to the inhibition of tumour angiogenesis, tumour growth and the development of metastasis was strongly reduced in SU5416 treated animals. This new approach enables non-invasive, repeated and quantitative assessment of tumour vascular network and the effects of antiangiogenic treatment on tumour vasculature in vivo. Thus, quantification of tumour angiogenesis can be used to more accurately classify and monitor tumour biologic characteristics, and to explore aggressiveness of tumours
    corecore