20 research outputs found

    Novel simple sequence repeats (SSRs) detected by ND-FISH in heterochromatin of Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, substantial progress has been made in understanding the organization of sequences in heterochromatin regions containing single-copy genes and transposable elements. However, the sequence and organization of tandem repeat DNA sequences, which are by far the majority fraction of <it>D. melanogaster </it>heterochromatin, are little understood.</p> <p>Results</p> <p>This paper reports that the heterochromatin, as well as containing long tandem arrays of pentanucleotide satellites (AAGAG, AAGAC, AATAT, AATAC and AACAC), is also enriched in other simple sequence repeats (SSRs) such as A, AC, AG, AAG, ACT, GATA and GACA. Non-denaturing FISH (ND-FISH) showed these SSRs to localize to the chromocentre of polytene chromosomes, and was used to map them on mitotic chromosomes. Different distributions were detected ranging from single heterochromatic clusters to complex combinations on different chromosomes. ND-FISH performed on extended DNA fibres, along with Southern blotting, showed the complex organization of these heterochromatin sequences in long tracts, and revealed subclusters of SSRs (several kilobase in length) flanked by other DNA sequences. The chromosomal characterization of C, AAC, AGG, AAT, CCG, ACG, AGC, ATC and ACC provided further detailed information on the SSR content of <it>D. melanogaster </it>at the whole genome level.</p> <p>Conclusion</p> <p>These data clearly show the variation in the abundance of different SSR motifs and reveal their non-random distribution within and between chromosomes. The greater representation of certain SSRs in <it>D. melanogaster </it>heterochromatin suggests that its complexity may be greater than previously thought.</p

    Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements

    Get PDF
    Satellite DNAs (satDNAs) are long arrays of tandem repeats typically located in heterochromatin and span the centromeres of eukaryotic chromosomes. Despite the wealth of knowledge about satDNAs, little is known about a fraction of short, satDNA-like arrays dispersed throughout the genome. Our survey of the Pacific oyster Crassostrea gigas sequenced genome revealed genome assembly replete with satDNA-like tandem repeats. We focused on the most abundant arrays, grouped according to sequence similarity into 13 clusters, and explored their flanking sequences. Structural analysis showed that arrays of all 13 clusters represent central repeats of 11 non-autonomous elements named Cg_HINE, which are classified into the Helentron superfamily of DNA transposons. Each of the described elements is formed by a unique combination of flanking sequences and satDNA-like central repeats, coming from one, exceptionally two clusters in a consecutive order. While some of the detected Cg_HINE elements are related according to sequence similarities in flanking and repetitive modules, others evidently arose in independent events. In addition, some of the Cg_HINE’s central repeats are related to the classical C. gigas satDNA, interconnecting mobile elements and satDNAs. Genome-wide distribution of Cg_HINE implies non-autonomous Helentrons as a dynamic system prone to efficiently propagate tandem repeats in the C. gigas genome

    Molecular Characterization and Chromosomal Distribution of a Species-Specific Transcribed Centromeric Satellite Repeat from the Olive Fruit Fly, Bactrocera oleae

    Get PDF
    Satellite repetitive sequences that accumulate in the heterochromatin consist a large fraction of a genome and due to their properties are suggested to be implicated in centromere function. Current knowledge of heterochromatic regions of Bactrocera oleae genome, the major pest of the olive tree, is practically nonexistent. In our effort to explore the repetitive DNA portion of B. oleae genome, a novel satellite sequence designated BoR300 was isolated and cloned. The present study describes the genomic organization, abundance and chromosomal distribution of BoR300 which is organized in tandem, forming arrays of 298 bp-long monomers. Sequence analysis showed an AT content of 60.4%, a CENP-B like-motif and a high curvature value based on predictive models. Comparative analysis among randomly selected monomers demonstrated a high degree of sequence homogeneity (88% - 97%) of BoR300 repeats, which are present at approximately 3,000 copies per haploid genome accounting for about 0.28% of the total genomic DNA, based on two independent qPCR approaches. In addition, expression of the repeat was also confirmed through RT-PCR, by which BoR300 transcripts were detected in both sexes. Fluorescence in situ hybridization (FISH) of BoR300 on mitotic metaphases and polytene chromosomes revealed signals to the centromeres of two out of the six chromosomes which indicated a chromosome-specific centromeric localization. Moreover, BoR300 is not conserved in the closely related Bactrocera species tested and it is also absent in other dipterans, but it's rather restricted to the B. oleae genome. This feature of species-specificity attributed to BoR300 satellite makes it a good candidate as an identification probe of the insect among its relatives at early development stages

    Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks

    No full text
    The ubiquity of satellite DNA (satDNA) sequences has raised much controversy over the abundance of divergent monomer variants and the long-time nucleotide sequence stability observed for many satDNA families. In this work, we describe the satDNA BIV160, characterized in nine species of the three main bivalve clades (Protobranchia, Pteriomorphia and Heteroconchia). BIV160 monomers are similar in repeat size and nucleotide sequence to satDNAs described earlier in oysters and in the clam Donax trunculus. The broad distribution of BIV160 satDNA indicates that similar variants existed in the ancestral bivalve species that lived about 540 million years ago; this makes BIV160 the most ancient satDNA described so far. In the species examined, monomer variants are distributed in quite a complex pattern. This pattern includes (i) species characterized by a specific group of variants, (ii) species that share distinct group(s) of variants and (iii) species with both specific and shared types. The evolutionary scenario suggested by these data reconciles sequence uniformity in homogenization-maintained satDNA arrays with the genomic richness of divergent monomer variants formed by diversification of the same ancestral satDNA sequence. Diversified repeats can continue to evolve in a non-concerted manner and behave as independent amplification-contraction units in the framework of a \u2018library of satDNA variants\u2019 representing a permanent source of monomers that can be amplified into novel homogeneous satDNA arrays. On the whole, diversification of satDNA monomers and copy number fluctuations provide a highly dynamic genomic environment able to form and displace satDNA sequence variants rapidly in evolution
    corecore