22,968 research outputs found

    Reply to the Comment on `Deterministic Single-Photon Source for Distributed Quantum Networking'

    Get PDF
    Reply to the comment of H. J. Kimble [quant-ph/0210032] on the experiment realizing a "deterministic single-photon source for distributed quantum networking" by Kuhn, Hennrich, and Rempe [Phys. Rev. Lett. 89, 067901 (2002), quant-ph/0204147].Comment: 1 page 1 figur

    Unifying metastasis--Integrating intravasation, circulation and end organ colonization

    Get PDF
    Recent technological advances that have enabled the measurement of circulating tumour cells (CTCs) in patients have spurred interest in the circulatory phase of metastasis. Techniques that do not solely rely on a blood sample allow substantial biological interrogation beyond simply counting CTCs

    Next-to-Next-to-Leading Electroweak Logarithms for W-Pair Production at LHC

    Get PDF
    We derive the high energy asymptotic of one- and two-loop corrections in the next-to-next-to-leading logarithmic approximation to the differential cross section of WW-pair production at the LHC. For large invariant mass of the W-pair the (negative) one-loop terms can reach more than 40%, which are partially compensated by the (positive) two-loop terms of up to 10%.Comment: 23 pages, 9 figures, added explanations in section 3, corrected typos and figures 7, 8,

    Perspectives for the radiative return at meson factories

    Full text link
    The measurement of the pion form factor and, more generally, of the cross section for electron-positron annihilation into hadrons through the radiative return has become an important task for high luminosity colliders such as the Phi- or B-meson factories. This quantity is crucial for predictions of the hadronic contributions to the anomalous magnetic moment of the muon, and to the running of the electromagnetic coupling. But the radiative return opens the possibility of many other physical applications. The physics potential of this method at high luminosity meson factories is discussed, the last upgraded version of the event generator PHOKHARA is presented, and future developments are highlighted.Comment: Presented at SIGHAD03: Worskhop on Hadronic Cross Section at Low Energy, Pisa,Italy, October 8th-10th, 200

    Diffusion and Interdiffusion in Binary Metallic Melts

    Full text link
    We discuss the dependence of self- and interdiffusion coefficients on temperature and composition for two prototypical binary metallic melts, Al-Ni and Zr-Ni, in molecular-dynamics (MD) computer simulations and the mode-coupling theory of the glass transition (MCT). Dynamical processes that are mainly entropic in origin slow down mass transport (as expressed through self diffusion) in the mixture as compared to the ideal-mixing contribution. Interdiffusion of chemical species is a competition of slow kinetic modes with a strong thermodynamic driving force that is caused by non-entropic interactions. The combination of both dynamic and thermodynamic effects causes qualitative differences in the concentration dependence of self-diffusion and interdiffusion coefficients. At high temperatures, the thermodynamic enhancement of interdiffusion prevails, while at low temperatures, kinetic effects dominate the concentration dependence, rationalized within MCT as the approach to its ideal-glass transition temperature TcT_c. The Darken equation relating self- and interdiffusion qualitatively reproduces the concentration-dependence in both Zr-Ni and Al-Ni, but quantitatively, the kinetic contributions to interdiffusion can be slower than the lower bound suggested by the Darken equation. As temperature is decreased, the agreement with Darken's equation improves, due to a strong coupling of all kinetic modes that is a generic feature predicted by MCT.Comment: 16 pages, 12 figure

    Spiral Growth and Step Edge Barriers

    Get PDF
    The growth of spiral mounds containing a screw dislocation is compared to the growth of wedding cakes by two-dimensional nucleation. Using phase field simulations and homoepitaxial growth experiments on the Pt(111) surface we show that both structures attain the same characteristic large scale shape when a significant step edge barrier suppresses interlayer transport. The higher vertical growth rate observed for the spiral mounds on Pt(111) reflects the different incorporation mechanisms for atoms in the top region and can be formally represented by an enhanced apparent step edge barrier.Comment: 11 pages, 4 figures, partly in colo

    Tight local approximation results for max-min linear programs

    Full text link
    In a bipartite max-min LP, we are given a bipartite graph \myG = (V \cup I \cup K, E), where each agent v∈Vv \in V is adjacent to exactly one constraint i∈Ii \in I and exactly one objective k∈Kk \in K. Each agent vv controls a variable xvx_v. For each i∈Ii \in I we have a nonnegative linear constraint on the variables of adjacent agents. For each k∈Kk \in K we have a nonnegative linear objective function of the variables of adjacent agents. The task is to maximise the minimum of the objective functions. We study local algorithms where each agent vv must choose xvx_v based on input within its constant-radius neighbourhood in \myG. We show that for every ϵ>0\epsilon>0 there exists a local algorithm achieving the approximation ratio ΔI(1−1/ΔK)+ϵ{\Delta_I (1 - 1/\Delta_K)} + \epsilon. We also show that this result is the best possible -- no local algorithm can achieve the approximation ratio ΔI(1−1/ΔK){\Delta_I (1 - 1/\Delta_K)}. Here ΔI\Delta_I is the maximum degree of a vertex i∈Ii \in I, and ΔK\Delta_K is the maximum degree of a vertex k∈Kk \in K. As a methodological contribution, we introduce the technique of graph unfolding for the design of local approximation algorithms.Comment: 16 page
    • …
    corecore