4 research outputs found

    Linking complement C3 and B cells in nasal polyposis

    Get PDF
    Nasal polyposis often is characterized by a persistent inflammation of the sinonasal mucosa, disease recurrence after medical or surgical intervention, and asthma comorbidity. Dysregulated complement activation may contribute to immunologic alterations and disease. To date, there is only scattered knowledge on the source and regulation of the central complement factors in the pathogenesis of nasal polyps. Here, we aim to study complement signatures, especially the C3-C3aR axis, and focus on cellular sources and targets in nasal polyps. Expression of complement factors, including C3, C5, and the anaphylatoxin receptors, was analyzed in nasal polyp tissue samples, the corresponding inferior turbinates, and healthy controls using transcriptomic methods and protein measurements. Distinct patterns of complement expression were found in nasal polyps compared to controls, characterized by an increased C3 activation and an increase in C3aR-bearing cells. In contrast, no difference was shown for epithelial-dependent C3 production. Besides low intracellular C3-expression levels for lymphocytes in general, we could identify an enlarged B lymphocyte population in nasal polyps displaying high amounts of intracellular C3. Our data suggest a prominent role for the C3-C3aR-axis in nasal polyps and, for the first time, describe a B cell population containing high levels of intracellular C3, suggesting a new role of B cells in the maintenance of the inflammation by complement

    Draft genome sequences and antimicrobial profiles of three staphylococcus epidermidis strains from neonatal blood samples

    No full text
    Data on molecular characterization of coagulase-negative staphylococci causing neonatal sepsis in low-income countries are highly limited. This report highlights the isolation of three Staphylococcus epidermidis non-genome assembly strains (NGASs) from blood samples from neonates with unknown transmission sources. Pathogenic factors and sources of transmission of these strains warrant further investigation

    Mutational landscape of high-grade B-cell lymphoma with MYC-, BCL2 and/or BCL6 rearrangements characterized by whole-exome sequencing

    No full text
    High-grade B-cell lymphoma accompanied with double/triple-hit MYC and BCL2 and/or BCL6 rearrangements (HGBLDH/TH) poses a cytogenetically-defined provisional entity among aggressive B-cell lymphomas that is traditionally associated with unfavorable prognosis. In order to better understand the mutational and molecular landscape of HGBLDH/TH we here performed whole-exome sequencing and deep panel next-generation sequencing of 47 clinically annotated cases. Oncogenic drivers, mutational signatures and perturbed pathways were compared with data from follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We find an accumulation of oncogenic mutations in NOTCH, IL6/JAK/STAT and NF.B signaling pathways and delineate the mutational relationship within the continuum between FL/DLBCL, HGBL-DH/TH and BL. Further, we provide evidence of a molecular divergence between BCL2 and BCL6 rearranged HGBL-DH. Beyond a significant congruency with the C3/EZB DLBCL cluster in BCL2 rearranged cases on an exome-wide level, we observe an enrichment of the SBS6 mutation signature in BCL6 rearranged cases. Differential gene set enrichment and subsequent network propagation analysis according to cytogenetically defined subgroups revealed an impairment of TP53 and MYC pathway signaling in BCL2 rearranged cases, whereas BCL6 rearranged cases lacked this enrichment, but instead showed impairment of E2F targets. Intriguingly, HGBL-TH displayed intermediate mutational features considering all three aspects. This study elucidates a recurrent pattern of mutational events driving FL into MYC-driven BCL2-rearranged HGBL, unveiling the mutational pathogenesis of this provisional entity. Through this refinement of the molecular taxonomy for aggressive, germinal center-derived B-cell lymphomas, this calls into question the current World Health Organization classification system, especially regarding the status of MYC/BCL6rearranged HGBL

    Genomic insights into the pathogenesis of Epstein-Barr virus-associated diffuse large B-cell lymphoma by whole-genome and targeted amplicon sequencing

    No full text
    Epstein-Barr virus (EBV)-associated diffuse large B-cell lymphoma not otherwise specified (DLBCL NOS) constitute a distinct clinicopathological entity in the current World Health Organization (WHO) classification. However, its genomic features remain sparsely characterized. Here, we combine whole-genome sequencing (WGS), targeted amplicon sequencing (tNGS), and fluorescence in situ hybridization (FISH) from 47 EBV + DLBCL (NOS) cases to delineate the genomic landscape of this rare disease. Integrated WGS and tNGS analysis clearly distinguished this tumor type from EBV-negative DLBCL due to frequent mutations in ARID1A (45%), KMT2A/KMT2D (32/30%), ANKRD11 (32%), or NOTCH2 (32%). WGS uncovered structural aberrations including 6q deletions (5/8 patients), which were subsequently validated by FISH (14/32 cases). Expanding on previous reports, we identified recurrent alterations in CCR6 (15%), DAPK1 (15%), TNFRSF21 (13%), CCR7 (11%), and YY1 (6%). Lastly, functional annotation of the mutational landscape by sequential gene set enrichment and network propagation predicted an effect on the nuclear factor kappa B (NF kappa B) pathway (CSNK2A2, CARD10), IL6/JAK/STAT (SOCS1/3, STAT3), and WNT signaling (FRAT1, SFRP5) alongside aberrations in immunological processes, such as interferon response. This first comprehensive description of EBV + DLBCL (NOS) tumors substantiates the evidence of its pathobiological independence and helps stratify the molecular taxonomy of aggressive lymphomas in the effort for future therapeutic strategies
    corecore