115 research outputs found
Immunophenotypic studies of monoclonal gammopathy of undetermined significance
<p>Abstract</p> <p>Background</p> <p>Monoclonal gammopathy of undetermined significance (MGUS) is a common plasma cell dyscrasia, comprising the most indolent form of monoclonal gammopathy. However, approximately 25% of MGUS cases ultimately progress to plasma cell myeloma (PCM) or related diseases. It is difficult to predict which subset of patients will transform. In this study, we examined the immunophenotypic differences of plasma cells in MGUS and PCM.</p> <p>Methods</p> <p>Bone marrow specimens from 32 MGUS patients and 32 PCM patients were analyzed by 4-color flow cytometry, using cluster analysis of ungated data, for the expression of several markers, including CD10, CD19, CD20, CD38, CD45, CD56 and surface and intracellular immunoglobulin light chains.</p> <p>Results</p> <p>All MGUS patients had two subpopulations of plasma cells, one with a "normal" phenotype [CD19(+), CD56(-), CD38(bright +)] and one with an aberrant phenotype [either CD19(-)/CD56(+) or CD19(-)/CD56(-)]. The normal subpopulation ranged from 4.4 to 86% (mean 27%) of total plasma cells. Only 20 of 32 PCM cases showed an identifiable normal subpopulation at significantly lower frequency [range 0β32%, mean 3.3%, p << 0.001]. The plasma cells in PCM were significantly less likely to express CD19 [1/32 (3.1%) vs. 13/29 (45%), p << 0.001] and more likely to express surface immunoglobulin [21/32 (66%) vs. 3/28 (11%), p << 0.001], compared to MGUS. Those expressing CD19 did so at a significantly lower level than in MGUS, with no overlap in mean fluorescence intensities [174 Β± 25 vs. 430 Β± 34, p << 0.001]. There were no significant differences in CD56 expression [23/32 (72%) vs. 18/29 (62%), p = 0.29], CD45 expression [15/32 (47%) vs. 20/30 (67%), p = 0.10] or CD38 mean fluorescence intensities [6552 Β± 451 vs. 6365 Β± 420, p = 0.38]. Two of the six MGUS cases (33%) with >90% CD19(-) plasma cells showed progression of disease, whereas none of the cases with >10% CD19(+) plasma cells evolved to PCM.</p> <p>Conclusion</p> <p>MGUS cases with potential for disease progression appeared to lack CD19 expression on >90% of their plasma cells, displaying an immunophenotypic profile similar to PCM plasma cells. A higher relative proportion of CD19(+) plasma cells in MGUS may be associated with a lower potential for disease progression.</p
Bisphosphonates as antimyeloma drugs
In patients with symptomatic multiple myeloma (MM), bisphosphonate (BP) treatment has been widely used to prevent bone loss and preserve skeletal health because of its proven effects on inhibiting osteoclast-mediated bone resorption. In addition to their effects on osteoclasts, it is becoming increasingly evident that BPs may have additional effects on the bone microenvironment and cells other than osteoclasts that may potentially inhibit the development and progression of MM. This review focuses on the pathophysiology of MM with an emphasis on the events that drive MM progression within the bone and the mechanisms by which BPs may inhibit specific processes. The underlying molecular mechanisms that drive the modulation of cellular fate and function and consequent physiological outcomes are described. Direct effects on myeloma cell growth and survival and the interactions between myeloma cells and the bone microenvironment are discussed. Clinical evidence of the antimyeloma effects of BPs is emerging and is also reviewed
AV-65, a novel Wnt/Ξ²-catenin signal inhibitor, successfully suppresses progression of multiple myeloma in a mouse model
Multiple myeloma (MM) is a malignant neoplasm of plasma cells. Although new molecular targeting agents against MM have been developed based on the better understanding of the underlying pathogenesis, MM still remains an incurable disease. We previously demonstrated that Ξ²-catenin, a downstream effector in the Wnt pathway, is a potential target in MM using RNA interference in an in vivo experimental mouse model. In this study, we have screened a library of more than 100β000 small-molecule chemical compounds for novel Wnt/Ξ²-catenin signaling inhibitors using a high-throughput transcriptional screening technology. We identified AV-65, which diminished Ξ²-catenin protein levels and T-cell factor transcriptional activity. AV-65 then decreased c-myc, cyclin D1 and survivin expression, resulting in the inhibition of MM cell proliferation through the apoptotic pathway. AV-65 treatment prolonged the survival of MM-bearing mice. These findings indicate that this compound represents a novel and attractive therapeutic agent against MM. This study also illustrates the potential of high-throughput transcriptional screening to identify candidates for anticancer drug discovery
A Functional NQO1 609C>T Polymorphism and Risk of Gastrointestinal Cancers: A Meta-Analysis
Background: The functional polymorphism (rs1800566) in the NQO1 gene, a 609C.T substitution, leading to proline-toserine amino-acid and enzyme activity changes, has been implicated in cancer risk, but individually published studies showed inconclusive results. Methodology/Principal Findings: We performed a meta-analysis of 20 publications with a total of 5,491 cases and 5,917 controls, mainly on gastrointestinal (GI) cancers. We summarized the data on the association between the NQO1 609C.T polymorphism and risk of GI cancers and performed subgroup analyses by ethnicity, cancer site, and study quality. We found that the variant CT heterozygous and CT/TT genotypes of the NQO1 609 C.T polymorphism were associated with a modestly increased risk of GI cancers (CT vs. CC: OR = 1.10, 95 % CI = 1.01 β 1.19, P heterogeneity = 0.27, I 2 = 0.15; CT/TT vs. CC: OR = 1.11, 95%CI = 1.02 β 1.20, Pheterogeneity = 0.14; I 2 = 0.27). Following further stratified analyses, the increased risk was only observed in subgroups of Caucasians, colorectal cancer in Caucasians, and high quality studies. Conclusions: This meta-analysis suggests that the NQO1 609T allele is a low-penetrance risk factor for GI cancers. Although the effect on GI cancers may be modified by ethnicity and cancer sites, small sample seizes of the subgroup analyse
- β¦