933 research outputs found

    A global risk assessment of primates under climate and land use/cover scenarios

    Get PDF
    Primates are facing an impending extinction crisis, driven by extensive habitat loss, land use change, and hunting. Climate change is an additional threat, which alone or in combination with other drivers, may severely impact those taxa unable to track suitable environmental conditions. Here, we investigate the extent of climate and land use/cover (LUC) change-related risks for primates. We employed an analytical approach to objectively select a subset of climate scenarios, for which we then calculated changes in climatic and LUC conditions for 2050 across primate ranges (N=426 species) under a best- and a worst-case scenario. Generalised linear models were used to examine whether these changes varied according to region, conservation status, range extent, and dominant habitat. Finally, we reclassified primate ranges based on different magnitudes of maximum temperature change, and quantified the proportion of ranges overall and of primate hotspots in particular that are likely to be exposed to extreme temperature increases. We found that, under the worst-case scenario, 74% of Neotropical forest-dwelling primates are likely to be exposed to maximum temperature increases up to 7°C. In contrast, 38% of Malagasy savanna primates will experience less pronounced warming of up to 3.5°C. About one quarter of Asian and African primates will face up to 50% crop expansion within their range. Primary land (undisturbed habitat) is expected to disappear across species’ ranges, whereas secondary land (disturbed habitat) will increase by up to 98%. With 86% of primate ranges likely to be exposed to maximum temperature increases >3°C, primate hotspots in the Neotropics are expected to be particularly vulnerable. Our study highlights the fundamental exposure risk of a large percentage of primate ranges to predicted climate and LUC changes. Importantly, our findings underscore the urgency with which climate change mitigation measures need to be implemented to avert primate extinctions on an unprecedented scale

    A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations

    Full text link
    A major goal of modern computational biology is to simulate the collective behaviour of large cell populations starting from the intricate web of molecular interactions occurring at the microscopic level. In this paper we describe a simplified model of cell metabolism, growth and proliferation, suitable for inclusion in a multicell simulator, now under development (Chignola R and Milotti E 2004 Physica A 338 261-6). Nutrients regulate the proliferation dynamics of tumor cells which adapt their behaviour to respond to changes in the biochemical composition of the environment. This modeling of nutrient metabolism and cell cycle at a mesoscopic scale level leads to a continuous flow of information between the two disparate spatiotemporal scales of molecular and cellular dynamics that can be simulated with modern computers and tested experimentally.Comment: 58 pages, 7 figures, 3 tables, pdf onl

    Towards Automated Visual Monitoring of Individual Gorillas in the Wild

    Get PDF

    A Biological Inventory of Meacham Cave (Independence County, Arkansas)

    Get PDF
    During September 2008 through June 2011, we compiled a biological inventory of Meacham Cave in Independence County, AR. Compared to other caves in the region, Meacham Cave houses few vertebrates, but non-aquatic invertebrates were relatively common. A transiently-increased bacterial load in the cave’s only pool of water indicated recent fecal contamination. The combination of vandalism, low vertebrate populations, and high coliform bacterial load reveals that human abuse of the cave has significantly disrupted its ecosystem. Gating the cave in such a way as to allow the movement of bats, salamanders and other animals, while excluding humans, may allow the cave ecosystem to recover. The close proximity of the cave to Lyon College makes it ideal for long-term investigation
    • …
    corecore