3 research outputs found

    Environmental monitoring of fish in the Paz watercourse

    Get PDF
    Appendix 7/15 of the publication "State of the environment in the Norwegian, Finnish and Russian border area 2007" (The Finnish Environment 6/2007)

    Long-term modification of Arctic lake ecosystems: Reference condition, degradation under toxic impacts and recovery (case study Imandra Lakes, Russia)

    Get PDF
    AbstractIn this study, published data on Lake Imandra, north-west Russia, have been synthesised to investigate trends in lake contamination and recovery due to changing inputs of heavy metals and nutrients over time. Records of water chemistry, phytoplankton, zooplankton and fish communities have been used to determine the status of aquatic ecosystem health in three distinct phases of Lake Imandra's recent history. Firstly, background (reference) conditions within the lake have been established to determine lake conditions prior to anthropogenic influences. Secondly, a period of ecosystem degradation due to anthropogenic inputs of toxic metals and nutrients has been described. Finally, evidence of lake recovery due to recent decreases of toxic metals and nutrients has been explored. Pollution of Lake Imandra began in the 1930s, reaching a peak in the 1980s. Increases in heavy metal and nutrient inputs transformed the typical Arctic ecosystem. During the contamination phase, there was a decrease in Arctic species and in biodiversity. During the last 10 years, pollution has decreased and the lake has been recolonised by Arctic water species. Ecosystem recovery is indicated by a change of predominant species, an increase in the individual mass of organisms and an increase in the biodiversity index of plankton communities. In accordance with Odum's ecosystem succession theory, this paper demonstrates that the ecosystem has transformed to a more stable condition with new defining parameters. This illustrates that the recovery of Arctic ecosystems towards pre-industrial reference conditions after a reduction in anthropogenic stresses occur, although a complete return to background conditions may not be achievable. Having determined the status of current ecosystem health within Lake Imandra, the effect of global warming on the recovery process is discussed. Climate warming in Arctic regions is likely to move the ecosystem towards a predominance of eurybiontic species in the community structure. These organisms have the ability to tolerate a wider range of environmental conditions than typical Arctic inhabitants and will gain advantages in development. This indicates that the full recovery of Arctic ecosystems in a warming climate may not be possible
    corecore