78 research outputs found

    Susceptibility functions for slow relaxation processes in supercooled liquids and the search for universal relaxation patterns

    Full text link
    In order to describe the slow response of a glass former we discuss some distribution of correlation times, e.g., the generalized gamma distribution (GG) and an extension thereof (GGE), the latter allowing to reproduce a simple peak susceptibility such as of Cole-Davidson type as well as a susceptibility exhibiting an additional high frequency power law contribution (excess wing). Applying the GGE distribution to the dielectric spectra of glass formers exhibiting no beta-process peak (glycerol, propylene carbonate and picoline) we are able to reproduce the salient features of the slow response (1e-6 Hz - 1e9 Hz). A line shape analysis is carried out either in the time or frequency domain and in both cases an excess wing can be identified. The latter evolves in a universal way while cooling and shows up for correlation times tau_alpha > 1e-8 s. It appears that its first emergence marks the break down of the high temperature scenario of mode coupling theory. - In order to describe a glass former exhibiting a beta-process peak we have introduced a distribution function which is compatible with assuming a thermally activated process in contrast to some commonly used fit functions. Together with the GGE distribution this function allows in the frame of the Williams-Watts approach to completely interpolate the spectra, e.g. of fluoro aniline (1e-6 Hz - 1e9 Hz). The parameters obtained indicate an emergence of both the excess wing and the beta-process again at tau_alpha > 1e-8s.Comment: 22 pages, 12 figure

    Evidence of secondary relaxations in the dielectric spectra of ionic liquids

    Full text link
    We investigated the dynamics of a series of room temperature ionic liquids based on the same 1-butyl-3-methyl imidazolium cation and different anions by means of broadband dielectric spectroscopy covering 15 decades in frequency (10^(-6)-10^9 Hz), and in the temperature range from 400 K down to 35 K. An ionic conductivity is observed above the glass transition temperature T_{g} with a relaxation in the electric modulus representation. Below T_{g}, two relaxation processes appear, with the same features as the secondary relaxations typically observed in molecular glasses. The activation energy of the secondary processes and their dependence on the anion are different. The slower process shows the characteristics of an intrinsic Johari-Goldstein relaxation, in particular an activation energy E_{beta}=24k_{B}T_{g} is found, as observed in molecular glasses.Comment: Major revision, submitted to Phys. Rev. Let

    Frequency-domain study of relaxation in a spin glass model for the structural glass transition

    Full text link
    We have computed the time-dependent susceptibility for the finite-size mean-field Random Orthogonal model (ROM). We find that for temperatures above the mode-coupling temperature the imaginary part of the susceptibility χâ€Čâ€Č(Îœ)\chi''(\nu) obeys the scaling forms proposed for glass-forming liquids. Furthermore, as the temperature is lowered the peak frequency of χâ€Čâ€Č\chi'' decreases following a Vogel-Fulcher law with a critical temperature remarkably close to the known critical temperature TcT_c where the configurational entropy vanishes.Comment: 7 pages, 4 figures, epl LaTeX packag

    Non-Arrhenius Behavior of Secondary Relaxation in Supercooled Liquids

    Full text link
    Dielectric relaxation spectroscopy (1 Hz - 20 GHz) has been performed on supercooled glass-formers from the temperature of glass transition (T_g) up to that of melting. Precise measurements particularly in the frequencies of MHz-order have revealed that the temperature dependences of secondary beta-relaxation times deviate from the Arrhenius relation in well above T_g. Consequently, our results indicate that the beta-process merges into the primary alpha-mode around the melting temperature, and not at the dynamical transition point T which is approximately equal to 1.2 T_g.Comment: 4 pages, 4 figures, revtex

    Glassy dynamics in mono-, di-, and tri-propylene glycol: From the alpha- to the fast beta-relaxation

    Full text link
    We present a thorough characterization of the glassy dynamics of three propylene glycols (mono-, di- and trimer) by broadband dielectric spectroscopy. By covering a frequency range of more than 15 decades, we have access to the entire variety of dynamic processes typical for glassy dynamics. These results add three more molecular glass formers to the sparse list of materials for which real broadband spectra, including the region of the fast beta-process, are available. Some first analyses of the various observed dynamic processes are provided

    Minimal model for beta relaxation in viscous liquids

    Get PDF
    Contrasts between beta relaxation in equilibrium viscous liquids and glasses are rationalized in terms of a double-well potential model with structure-dependent asymmetry, assuming structure is described by a single order parameter. The model is tested for tripropylene glycol where it accounts for the hysteresis of the dielectric beta loss peak frequency and magnitude during cooling and reheating through the glass transition.Comment: Phys. Rev. Lett. (in press

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"

    Broadband Dielectric Spectroscopy on Glass-Forming Propylene Carbonate

    Full text link
    Dielectric spectroscopy covering more than 18 decades of frequency has been performed on propylene carbonate in its liquid and supercooled-liquid state. Using quasi-optic submillimeter and far-infrared spectroscopy the dielectric response was investigated up to frequencies well into the microscopic regime. We discuss the alpha-process whose characteristic timescale is observed over 14 decades of frequency and the excess wing showing up at frequencies some three decades above the peak frequency. Special attention is given to the high-frequency response of the dielectric loss in the crossover regime between alpha-peak and boson-peak. Similar to our previous results in other glass forming materials we find evidence for additional processes in the crossover regime. However, significant differences concerning the spectral form at high frequencies are found. We compare our results to the susceptibilities obtained from light scattering and to the predictions of various models of the glass transition.Comment: 13 pages, 9 figures, submitted to Phys. Rev.

    Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers

    Full text link
    The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. Varying the external thermodynamic parameters a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.Comment: 13 pages, 8 figure
    • 

    corecore