190 research outputs found

    Semantic catalogs for life cycle assessment data

    Get PDF
    AbstractLife cycle assessment (LCA) is a highly interdisciplinary field that requires knowledge from different domains to be gathered and interpreted together. Although there are relatively few major data sources for LCA, the data themselves are presented with highly heterogeneous formats, interfaces, and distribution mechanisms. The lack of agreement among data providers for descriptions of processes and flows creates substantial barriers for information sharing and reuse of practitioners’ models.Nevertheless, the many data resources share a common logic. The use of Semantic Web technologies and text mining techniques can facilitate the interpretation of data from diverse sources. Numerous existing efforts have been made to articulate a knowledge model for LCA. In March of 2015 a joint workshop was held that brought together leading international domain experts with ontology engineers to develop a set of simple models called ontology design patterns (ODPs) for LCA information. In this paper we build on the outcomes of the workshop, as well as prior published works, to derive a minimal β€œconsensus model” for LCA. We use the consensus model to derive a description of an LCA β€œcatalog” that can be used to express the semantic content of a data resource. We generate catalogs of several prominent databases, and make those catalogs available to the public for independent use. Finally, we β€œlink” those catalogs to existing knowledge models using JSON-LD, a linked data format that can expose the catalog contents to Semantic Web tools.We then show by example how the catalogs may be used to answer questions about the scope, coverage, and comparability of data, both within and across data sources, that are difficult to answer when the contents of the catalogs are provided independently and inconsistently. We discuss how the use of semantic catalogs can help address challenges that initiatives such as the β€œGlobal Network of Interoperable LCA Databases – Global LCA Data Access” are facing today

    Probing Cellular Dynamics with a Chemical Signal Generator

    Get PDF
    Observations of material and cellular systems in response to time-varying chemical stimuli can aid the analysis of dynamic processes. We describe a microfluidic β€œchemical signal generator,” a technique to apply continuously varying chemical concentration waveforms to arbitrary locations in a microfluidic channel through feedback control of the interface between parallel laminar (co-flowing) streams. As the flow rates of the streams are adjusted, the channel walls are exposed to a chemical environment that shifts between the individual streams. This approach can be used to probe the dynamic behavior of objects or substances adherent to the interior of the channel. To demonstrate the technique, we exposed live fibroblast cells to ionomycin, a membrane-permeable calcium ionophore, while assaying cytosolic calcium concentration. Through the manipulation of the laminar flow interface, we exposed the cells' endogenous calcium handling machinery to spatially-contained discrete and oscillatory intracellular disturbances, which were observed to elicit a regulatory response. The spatiotemporal precision of the generated signals opens avenues to previously unapproachable areas for potential investigation of cell signaling and material behavior

    On the Use of Multiple Probe Insertions at the Same Site for Repeated Intracerebral Microdialysis Experiments in the Nigrostriatal Dopamine System of Rats

    Full text link
    The effects of implantation of a dialysis probe into the striatum of awake rats on indices of dopamine (DA) and serotonin neurotransmission were assessed, first over 24 h following initial insertion of a probe, and then again following reinsertion of a probe at the same site 1 week later. It was found that the basal concentration of DA in dialysate stabilized within 20–40 min after probe implantation, although DA showed a modest decline 24 h later. There was, however, no significant difference in basal DA between two test sessions separated by 1 week. On the other hand, the basal concentrations of the DA metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, progressively increased for 2–3 h after probe implantation and decreased markedly by 24 h later. Furthermore, in contrast to DA, the DA metabolites decreased even further after the second probe insertion. Amphetamine-stimulated DA release was also greatly attenuated following the second probe insertion, relative to the first probe insertion. Two probe insertions had only modest effects on the concentration of 5-hydroxyindoleacetic acid in dialysate, relative to the DA metabolites. It is suggested the effects of two probe insertions on DA metabolism and amphetamine-stimulated DA release described here are indicative of probe-induced damage to the nigrostriatal DA system. If this is the case, multiple probe insertions may not provide a feasible strategy for within-subjects design dialysis experiments over extended periods of time, at least in the DA system of small animals. It is suggested further that a stable basal concentration of DA in dialysate may be an especially poor indicator of the integrity of the dopaminergic input to the striatum.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65235/1/j.1471-4159.1992.tb10044.x.pd

    Methamphetamine Inhibits the Glucose Uptake by Human Neurons and Astrocytes: Stabilization by Acetyl-L-Carnitine

    Get PDF
    Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3). Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 Β΅M increased the uptake while 200 Β΅M inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1). The adaptive nature of astrocyte to mitochondrial Ξ²-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers

    Methylphenidate Decreased the Amount of Glucose Needed by the Brain to Perform a Cognitive Task

    Get PDF
    The use of stimulants (methylphenidate and amphetamine) as cognitive enhancers by the general public is increasing and is controversial. It is still unclear how they work or why they improve performance in some individuals but impair it in others. To test the hypothesis that stimulants enhance signal to noise ratio of neuronal activity and thereby reduce cerebral activity by increasing efficiency, we measured the effects of methylphenidate on brain glucose utilization in healthy adults. We measured brain glucose metabolism (using Positron Emission Tomography and 2-deoxy-2[18F]fluoro-D-glucose) in 23 healthy adults who were tested at baseline and while performing an accuracy-controlled cognitive task (numerical calculations) given with and without methylphenidate (20 mg, oral). Sixteen subjects underwent a fourth scan with methylphenidate but without cognitive stimulation. Compared to placebo methylphenidate significantly reduced the amount of glucose utilized by the brain when performing the cognitive task but methylphenidate did not affect brain metabolism when given without cognitive stimulation. Whole brain metabolism when the cognitive task was given with placebo increased 21% whereas with methylphenidate it increased 11% (50% less). This reflected both a decrease in magnitude of activation and in the regions activated by the task. Methylphenidate's reduction of the metabolic increases in regions from the default network (implicated in mind-wandering) was associated with improvement in performance only in subjects who activated these regions when the cognitive task was given with placebo. These results corroborate prior findings that stimulant medications reduced the magnitude of regional activation to a task and in addition document a β€œfocusing” of the activation. This effect may be beneficial when neuronal resources are diverted (i.e., mind-wandering) or impaired (i.e., attention deficit hyperactivity disorder), but it could be detrimental when brain activity is already optimally focused. This would explain why methylphenidate has beneficial effects in some individuals and contexts and detrimental effects in others

    Evidence for genetic association of RORB with bipolar disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bipolar disorder, particularly in children, is characterized by rapid cycling and switching, making circadian clock genes plausible molecular underpinnings for bipolar disorder. We previously reported work establishing mice lacking the clock gene D-box binding protein (<it>DBP</it>) as a stress-reactive genetic animal model of bipolar disorder. Microarray studies revealed that expression of two closely related clock genes, <it>RAR</it>-related orphan receptors alpha (<it>RORA</it>) and beta (<it>RORB</it>), was altered in these mice. These retinoid-related receptors are involved in a number of pathways including neurogenesis, stress response, and modulation of circadian rhythms. Here we report association studies between bipolar disorder and single-nucleotide polymorphisms (SNPs) in <it>RORA </it>and <it>RORB</it>.</p> <p>Methods</p> <p>We genotyped 355 <it>RORA </it>and <it>RORB </it>SNPs in a pediatric cohort consisting of a family-based sample of 153 trios and an independent, non-overlapping case-control sample of 152 cases and 140 controls. Bipolar disorder in children and adolescents is characterized by increased stress reactivity and frequent episodes of shorter duration; thus our cohort provides a potentially enriched sample for identifying genes involved in cycling and switching.</p> <p>Results</p> <p>We report that four intronic <it>RORB </it>SNPs showed positive associations with the pediatric bipolar phenotype that survived Bonferroni correction for multiple comparisons in the case-control sample. Three <it>RORB </it>haplotype blocks implicating an additional 11 SNPs were also associated with the disease in the case-control sample. However, these significant associations were not replicated in the sample of trios. There was no evidence for association between pediatric bipolar disorder and any <it>RORA </it>SNPs or haplotype blocks after multiple-test correction. In addition, we found no strong evidence for association between the age-at-onset of bipolar disorder with any <it>RORA </it>or <it>RORB </it>SNPs.</p> <p>Conclusion</p> <p>Our findings suggest that clock genes in general and <it>RORB </it>in particular may be important candidates for further investigation in the search for the molecular basis of bipolar disorder.</p

    Phase-Locked Signals Elucidate Circuit Architecture of an Oscillatory Pathway

    Get PDF
    This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways

    Chronic Methamphetamine Administration Causes Differential Regulation of Transcription Factors in the Rat Midbrain

    Get PDF
    Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning
    • …
    corecore