4 research outputs found

    Molecular Beam Epitaxy Growth of Transition Metal Dichalcogenide (Mo,Mn)Se2_2 on 2D, 3D and polycrystalline substrates

    Full text link
    Magnetic doping of 2D materials such as Transition Metal Dichalcogenides is promising for the enhancement of magneto-optical properties, as it was previously observed for 3D diluted magnetic semiconductors. To maximize the effect of magnetic ions, they should be incorporated into the crystal lattice of 2D material rather than form separated precipitates. This work shows a study on incorporating magnetic manganese ions into the MoSe2_2 monolayers using molecular beam epitaxy. We test growth on various substrates with very different properties: polycrystalline SiO2_2 on Si, exfoliated 2D hexagonal Boron Nitride flakes (placed on SiO2_2 / Si), monocrystalline sapphire, and exfoliated graphite (on tantalum foil). Although atomic force microscopy images indicate the presence of MnSe precipitates, but at the same time, various techniques reveal effects related to alloying MoSe2_2 with Mn: Raman scattering and photoluminescence measurements show energy shift related to the presence of Mn, scanning transmission microscopy shows Mn induced partial transformation of 1H to 1T^\prime phase. Above effects evidence partial incorporation of Mn into the MoSe2_2 layer.Comment: 13 pages, 8 figure

    One stop shop: backbones trees for important phytopathogenic genera: I (2014)

    Get PDF
    Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper
    corecore