296 research outputs found
Modulation of neutral interstellar He, Ne, O in the heliosphere. Survival probabilities and abundances at IBEX
Direct sampling of neutral interstellar (NIS) atoms by the Interstellar
Boundary Explorer (IBEX) can potentially provide a complementary method for
studying element abundances in the Local Interstellar Cloud and processes in
the heliosphere interface.}{We set the stage for abundance-aimed in-depth
analysis of measurements of NIS He, Ne, and O by IBEX and determine systematic
differences between abundances derived from various calculation methods and
their uncertainties.}{Using a model of ionization rates of the NIS species in
the heliosphere, based on independent measurements of the solar wind and solar
EUV radiation, we develop a time-dependent method of calculating the survival
probabilities of NIS atoms from the termination shock (TS) of the solar wind to
IBEX. With them, we calculate densities of these species along the Earth's
orbit and simulate the fluxes of NIS species as observed by IBEX. We study
pairwise ratios of survival probabilities, densities and fluxes of NIS species
at IBEX to calculate correction factors for inferring the abundances at
TS.}{The analytic method to calculate the survival probabilities gives
acceptable results only for He and Ne during low solar activity. For the
remaining portions of the solar cycle, and at all times for O, a fully time
dependent model should be used. Electron impact ionization is surprisingly
important for NIS O. Interpreting the IBEX observations using the time
dependent model yields the LIC Ne/O abundance of . The uncertainty
is mostly due to uncertainties in the ionization rates and in the NIS gas flow
vector.}{The Ne/He, O/He and Ne/O ratios for survival probabilities, local
densities, and fluxes scaled to TS systematically differ and thus an analysis
based only on survival probabilities or densities is not recommended, except
the Ne/O abundance for observations at low solar activity.Comment: Astronomy & Astrophysics, in press. Language and editing corrections
implemente
Relativistic Approach to Superfluidity in Nuclear Matter
Pairing correlations in symmetric nuclear matter are studied within a
relativistic mean-field approximation based on a field theory of nucleons
coupled to neutral ( and ) and to charged () mesons.
The Hartree-Fock and the pairing fields are calculated in a self-consistent
way. The energy gap is the result of a strong cancellation between the scalar
and vector components of the pairing field. We find that the pair amplitude
vanishes beyond a certain value of momentum of the paired nucleons. This fact
determines an effective cutoff in the gap equation. The value of this cutoff
gives an energy gap in agreement with the estimates of non relativistic
calculations.Comment: 21 pages, REVTEX, 8 ps-figures, to appear in Phys.Rev.C. e-mail:
[email protected]
Relativistic Hartree-Bogoliubov Approach for Nuclear Matter with Non-Linear Coupling Terms
We investigate the pairing property of nuclear matter with Relativistic
Hartree-Bogoliubov(RHB) approach. Recently, the RHB approach has been widely
applied to nuclear matter and finite nuclei. We have extended the RHB approach
to be able to include non-linear coupling terms of mesons. In this paper we
apply it to nuclear matter and observe the effect of non-linear terms on
pairing gaps.Comment: 13 pages, 5 figure
Charged-Particle Motion in Electromagnetic Fields Having at Least One Ignorable Spatial Coordinate
We give a rigorous derivation of a theorem showing that charged particles in
an arbitrary electromagnetic field with at least one ignorable spatial
coordinate remain forever tied to a given magnetic-field line. Such a situation
contrasts the significant motions normal to the magnetic field that are
expected in most real three-dimensional systems. It is pointed out that, while
the significance of the theorem has not been widely appreciated, it has
important consequences for a number of problems and is of particular relevance
for the acceleration of cosmic rays by shocks.Comment: 7 pages, emulateapj format, including 1 eps figure, to appear in The
Astrophysical Journal, Dec. 10 1998 issu
Dirac Sea Effects on Superfluidity in Nuclear Matter
We study two kinds of Dirac sea effects on the pairing gap in nuclear
matter based on the relativistic Hartree approximation to quantum hadrodynamics
and the Gor'kov formalism. We show that the vacuum fluctuation effect on the
nucleon effective mass is more important than the direct coupling between the
Fermi sea and the Dirac sea due to the pairing interaction. The effects of the
high-momentum cutoff are also discussed.Comment: 11 pages, 3 eps figures included, uses REVTeX (with \tightenlines
The downwind hemisphere of the heliosphere: Eight years of IBEX-Lo observations
We present a comprehensive study of energetic neutral atoms (ENAs) of 10 eV
to 2.5 keV from the downwind hemisphere of the heliosphere. These ENAs are
believed to originate mostly from pickup protons and solar wind protons in the
inner heliosheath. This study includes all low-energy observations made with
the Interstellar Boundary Explorer over the first 8 years. Since the protons
around 0.1 keV dominate the plasma pressure in the inner heliosheath in
downwind direction, these ENA observations offer the unique opportunity to
constrain the plasma properties and dimensions of the heliosheath where no
in-situ observations are available.
We first derive energy spectra of ENA intensities averaged over time for 49
macropixels covering the entire downwind hemisphere. The results confirm
previous studies regarding integral intensities and the roll-over around 0.1
keV energy. With the expanded dataset we now find that ENA intensities at 0.2
and 0.1 keV seem to anti-correlate with solar activity. We then derive the
product of total plasma pressure and emission thickness of protons in the
heliosheath to estimate lower limits on the thickness of the inner heliosheath.
The temporally averaged ENA intensities support a rather spherical shape of the
termination shock and a heliosheath thickness between 150 and 210 au for most
regions of the downwind hemisphere. Around the nominal downwind direction of
76{\deg} ecliptic longitude, the heliosheath is at least 280 au thick. There,
the neutral hydrogen density seems to be depleted compared to upwind directions
by roughly a factor of 2.Comment: Preprint of article in The Astrophysical Journa
Bare vs effective pairing forces. A microscopic finite-range interaction for HFB calculations in coordinate space
We propose a microscopic effective interaction to treat pairing correlations
in the channel. It is introduced by recasting the gap equation
written in terms of the bare force into a fully equivalent pairing problem.
Within this approach, the proposed interaction reproduces the pairing
properties provided by the realistic force very accurately. Written in
the canonical basis of the actual Bogolyubov transformation, the force takes
the form of an off-shell in-medium two-body matrix in the superfluid phase
multiplied by a BCS occupation number . This interaction is finite
ranged, non local, total-momentum dependent and density dependent. The factor
emerging from the recast of the gap equation provides a natural
cut-off and makes zero-range approximations of the effective vertex meaningful.
Performing such an approximation, the roles of the range and of the density
dependence of the interaction can be disentangled. The isoscalar and isovector
density-dependences derived ab-initio provide the pairing force with a strong
predictive power when extrapolated toward the drip-lines. Although finite
ranged and non local, the proposed interaction makes HFB calculations of finite
nuclei in coordinate space tractable. Through the two-basis method, its
computational cost is of the same order as for a zero-range force.Comment: 43 pages, 13 figures. Published versio
Precision Pointing of IBEX-Lo Observations
Post-launch boresight of the IBEX-Lo instrument onboard the Interstellar
Boundary Explorer (IBEX) is determined based on IBEX-Lo Star Sensor
observations. Accurate information on the boresight of the neutral gas camera
is essential for precise determination of interstellar gas flow parameters.
Utilizing spin-phase information from the spacecraft attitude control system
(ACS), positions of stars observed by the Star Sensor during two years of IBEX
measurements were analyzed and compared with positions obtained from a star
catalog. No statistically significant differences were observed beyond those
expected from the pre-launch uncertainty in the Star Sensor mounting. Based on
the star observations and their positions in the spacecraft reference system,
pointing of the IBEX satellite spin axis was determined and compared with the
pointing obtained from the ACS. Again, no statistically significant deviations
were observed. We conclude that no systematic correction for boresight geometry
is needed in the analysis of IBEX-Lo observations to determine neutral
interstellar gas flow properties. A stack-up of uncertainties in attitude
knowledge shows that the instantaneous IBEX-Lo pointing is determined to within
\sim 0.1\degr in both spin angle and elevation using either the Star Sensor
or the ACS. Further, the Star Sensor can be used to independently determine the
spacecraft spin axis. Thus, Star Sensor data can be used reliably to correct
the spin phase when the Star Tracker (used by the ACS) is disabled by bright
objects in its field-of-view. The Star Sensor can also determine the spin axis
during most orbits and thus provides redundancy for the Star Tracker.Comment: 22 pages, 18 figure
- …