15 research outputs found

    Hilbert Space Structures on the Solution Space of Klein-Gordon Type Evolution Equations

    Full text link
    We use the theory of pseudo-Hermitian operators to address the problem of the construction and classification of positive-definite invariant inner-products on the space of solutions of a Klein-Gordon type evolution equation. This involves dealing with the peculiarities of formulating a unitary quantum dynamics in a Hilbert space with a time-dependent inner product. We apply our general results to obtain possible Hilbert space structures on the solution space of the equation of motion for a classical simple harmonic oscillator, a free Klein-Gordon equation, and the Wheeler-DeWitt equation for the FRW-massive-real-scalar-field models.Comment: 29 pages, slightly revised version, accepted for publication in Class. Quantum Gra

    Ag(I) and Zn(II) isonicotinate complexes: Design, characterization, antimicrobial effect and CT–DNA binding studies

    No full text
    <div><p></p><p>Trinuclear Ag(I) (<b>1</b>) and dinuclear and mononuclear Zn(II) isonicotinate (<b>2</b> and <b>3</b>) complexes were prepared and characterized by X–ray crystallography, elemental analysis, IR spectroscopy and thermal analysis. Single crystal analysis of the Ag(I) complex reveals two different monodentate carboxylate coordination modes, protonated and deprotonated, respectively. IR spectra showed correlations between isonicotinate coordination modes and <i>Δ</i>(<i>ν</i><sub>as</sub>–<i>ν</i><sub>s</sub>)<sub>IR</sub> values. In addition, the hydrogen bonds significantly influence a position of carboxylate absorption bands. Moreover, IC<sub>50</sub> and MIC data for bacteria, yeasts and filamentous fungi were determined and the binding of Ag(I) and Zn(II) complexes to calf thymus DNA was investigated using electronic absorption, fluorescence and CD measurements. Biological tests showed that the Ag(I) complex is more active than commercially used Ag(I) sulfadiazine against <i>E. Coli</i>. The fluorescence spectral results indicate that the complexes can bind to DNA through an intercalative mode. The Stern–Volmer quenching constants for investigated complexes obtained from the linear quenching plot are in the range of 1.67 × 10<sup>4</sup> to 3.42 × 10<sup>4</sup> M<sup>–1</sup>.</p></div

    Mononuclear Fe(III) Schiff Base Complex with Trans-FeO<sub>4</sub>N<sub>2</sub> Chromophore of <i>o</i>-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation

    No full text
    A new iron(III) complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1) where H2L = 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol has been synthesised and characterised by single crystal XRD, elemental analysis and DC magnetic susceptibility measurements. The dianionic ligands L2− coordinate in a tridentate fashion with the Fe(III) through their deprotonated phenolic oxygens and azomethine nitrogen atoms, resulting in a trans-FeO4N2 chromophore. Variable-temperature magnetic measurements were performed between 300 and 5 K under an applied field of 0.1 T and show that 1 is in the high spin state (S = 5/2) over the whole measured temperature range. This is confirmed by Mössbauer spectroscopy at 77 and 300 K
    corecore