76 research outputs found

    RNAi in clinical studies

    Get PDF
    RNA interference (RNAi) is an efficient process of posttranscriptional gene silencing. In recent years it has been developed into a new technology in biopharmaceutical fields of science. RNAi products include short interference RNA (siRNA) but also short hairpin RNA (shRNA), bifunctional short hairpin RNA (bi-shRNA) and microRNA (miRNA). They combine with homologous fragments of the mRNA and cause its degradation. It results in inhibition of protein synthesis, or in mutation in the gene encoding it. RNAi has been used in analysis of genomes and creation of new animal models to test drugs. From the pharmaceutical point of view, what is the most important is its therapeutic application. So far the basic and clinical research has been focused on the following targets: macular degeneration, cancer and antiviral therapy. But there are also reports on clinical trials in asthma, hypercholesterolemia and genetic diseases such as inherited skin disorders and amyloidosis. Among over 20 therapeutics that reached clinical trials, only few are still investigated. Another few are clinical candidates. The review focuses on RNAi products under clinical evaluation and their most promising new applications

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Formation and ordering of gold nanoparticles at the toluene-water interface

    No full text
    Microscopic measurements that provide direct information in nanometer length scales are essential to obtain a proper understanding of the interfacial reactions that form nanostructured materials. We present here the results of a synchrotron X-ray scattering study of the formation and ordering of gold nanoparticles at the toluene-water interface through a reduction reaction. The observed X-ray reflectivity and diffuse scattering data show the formation of a monolayer of "magic clusters" at the water-toluene interface. Each cluster consists of 13 nanoparticles with about 12 Ă… diameter, similar to Au-55 nanoparticles, with about an 11 Ă… organic layer and an in-plane cluster-cluster separation of 180 Ă…. The electron density profile of the monolayer of these clusters exhibits three layers of nanoparticles as a function of depth that evolves with time
    • …
    corecore