251 research outputs found

    Between-day reliability of electromechanical delay of selected neck muscles during performance of maximal isometric efforts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to assess the between-day reliability of the electromechanical delay (EMD) of selected neck muscles during the performance of maximal isometric contractions in five different directions.</p> <p>Methods</p> <p>Twenty-one physically active males participated in two testing sessions separated by seven to eight days. Using a custom-made fixed frame dynamometer, cervical force and surface electromyography (EMG) were recorded bilaterally from the splenius capitis, upper trapezius and sternocleidomastoid muscles during the performance of efforts in extension, flexion, left and right lateral bending, and protraction. The EMD was extracted using the Teager-Kaiser Energy Operator. Reliability indices calculated for each muscle in each testing direction were: the difference in scores between the two testing sessions and corresponding 95% confidence intervals, the standard error of measurement (SEM) and intra-class correlation coefficients (ICC).</p> <p>Results</p> <p>EMD values showed no evidence of systematic difference between the two testing sessions across all muscles and testing directions. The SEM for extension, flexion and lateral bending efforts ranged between 2.5 ms to 4.8 ms, indicating a good level of measurement precision. For protraction, SEM values were higher and considered to be imprecise for research and clinical purposes. ICC values for all muscles across all testing directions ranged from 0.23 to 0.79.</p> <p>Conclusion</p> <p>EMD of selected neck muscles can be measured with sufficient precision for the assessment of neck muscle function in an athletic population in the majority of directions tested.</p

    Distinct and Shared Roles of β-Arrestin-1 and β-Arrestin-2 on the Regulation of C3a Receptor Signaling in Human Mast Cells

    Get PDF
    BACKGROUND: The complement component C3a induces degranulation in human mast cells via the activation of cell surface G protein coupled receptors (GPCR; C3aR). For most GPCRs, agonist-induced receptor phosphorylation leads to the recruitment of β-arrestin-1/β-arrestin-2; resulting in receptor desensitization and internalization. Activation of GPCRs also leads to ERK1/2 phosphorylation via two temporally distinct pathways; an early response that reflects G protein activation and a delayed response that is G protein independent but requires β-arrestins. The role of β-arrestins on C3aR activation/regulation in human mast cells, however, remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of β-arrestin-1 and β-arrrestin-2 in human mast cell lines, HMC-1 and LAD2 that endogenously expresses C3aR. Silencing β-arrestin-2 attenuated C3aR desensitization, blocked agonist-induced receptor internalization and rendered the cells responsive to C3a for enhanced NF-κB activity as well as chemokine generation. By contrast, silencing β-arrestin-1 had no effect on these responses but resulted in a significant decrease in C3a-induced mast cell degranulation. In shRNA control cells, C3a caused a transient ERK1/2 phosphorylation, which peaked at 5 min but disappeared by 10 min. Knockdown of β-arrestin-1, β-arrestin-2 or both enhanced the early response to C3a and rendered the cells responsive for ERK1/2 phosphorylation at later time points (10-30 min). Treatment of cells with pertussis toxin almost completely blocked both early and delayed C3a-induced ERK1/2 phosphorylation in β-arrestin1/2 knockdown cells. CONCLUSION/SIGNIFICANCE: This study demonstrates distinct roles for β-arrestins-1 and β-arrestins-2 on C3aR desensitization, internalization, degranulation, NF-κB activation and chemokine generation in human mast cells. It also shows that both β-arrestin-1 and β-arrestin-2 play a novel and shared role in inhibiting G protein-dependent ERK1/2 phosphorylation. These findings reveal a new level of complexity for C3aR regulation by β-arrestins in human mast cells

    OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ancestry of mitochondria and chloroplasts traces back to separate endosymbioses of once free-living bacteria. The highly reduced genomes of these two organelles therefore contain very distant homologs that only recently have been shown to recombine inside the mitochondrial genome. Detection of gene conversion between mitochondrial and chloroplast homologs was previously impossible due to the lack of suitable computer programs. Recently, I developed a novel method and have, for the first time, discovered recurrent gene conversion between chloroplast mitochondrial genes. The method will further our understanding of plant organellar genome evolution and help identify and remove gene regions with incongruent phylogenetic signals for several genes widely used in plant systematics. Here, I implement such a method that is available in a user friendly web interface.</p> <p>Results</p> <p><monospace>OrgConv</monospace> (<b>Org</b>anellar <b>Conv</b>ersion) is a computer package developed for detection of gene conversion between mitochondrial and chloroplast homologous genes. <monospace>OrgConv</monospace> is available in two forms; source code can be installed and run on a Linux platform and a web interface is available on multiple operating systems. The input files of the feature program are two multiple sequence alignments from different organellar compartments in FASTA format. The program compares every examined sequence against the consensus sequence of each sequence alignment rather than exhaustively examining every possible combination. Making use of consensus sequences significantly reduces the number of comparisons and therefore reduces overall computational time, which allows for analysis of very large datasets. Most importantly, with the significantly reduced number of comparisons, the statistical power remains high in the face of correction for multiple tests.</p> <p>Conclusions</p> <p>Both the source code and the web interface of <monospace>OrgConv</monospace> are available for free from the <monospace>OrgConv</monospace> website <url>http://www.indiana.edu/~orgconv</url>. Although <monospace>OrgConv</monospace> has been developed with main focus on detection of gene conversion between mitochondrial and chloroplast genes, it may also be used for detection of gene conversion between any two distinct groups of homologous sequences.</p

    Response operators for Markov processes in a finite state space: radius of convergence and link to the response theory for Axiom A systems

    Get PDF
    Using straightforward linear algebra we derive response operators describing the impact of small perturbations to finite state Markov processes. The results can be used for studying empirically constructed—e.g. from observations or through coarse graining of model simulations—finite state approximation of statistical mechanical systems. Recent results concerning the convergence of the statistical properties of finite state Markov approximation of the full asymptotic dynamics on the SRB measure in the limit of finer and finer partitions of the phase space are suggestive of some degree of robustness of the obtained results in the case of Axiom A system. Our findings give closed formulas for the linear and nonlinear response theory at all orders of perturbation and provide matrix expressions that can be directly implemented in any coding language, plus providing bounds on the radius of convergence of the perturbative theory. In particular, we relate the convergence of the response theory to the rate of mixing of the unperturbed system. One can use the formulas derived for finite state Markov processes to recover previous findings obtained on the response of continuous time Axiom A dynamical systems to perturbations, by considering the generator of time evolution for the measure and for the observables. A very basic, low-tech, and computationally cheap analysis of the response of the Lorenz ’63 model to perturbations provides rather encouraging results regarding the possibility of using the approximate representation given by finite state Markov processes to compute the system’s response

    Alterations in Mesenteric Lymph Node T Cell Phenotype and Cytokine Secretion are Associated with Changes in Thymocyte Phenotype after LP-BM5 Retrovirus Infection

    Get PDF
    In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7+ cells and an increase in the percentage of IL-16+ cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-Υ secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-Υ secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4+CD8- or CD4- CD8+ cells was due to accumulation of both immature (CD3- ) and mature (CD3+) single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection

    Mechanisms and treatment of ischaemic stroke: insights from genetic associations

    Get PDF
    The precise pathophysiology of ischaemic stroke is unclear, and a greater understanding of the different mechanisms that underlie large-artery, cardioembolic and lacunar ischaemic stroke subtypes would enable the development of more-effective, subtype-specific therapies. Genome-wide association studies (GWASs) are identifying novel genetic variants that associate with the risk of stroke. These associations provide insight into the pathophysiological mechanisms, and present opportunities for novel therapeutic approaches. In this Review, we summarize the genetic variants that have been linked to ischaemic stroke in GWASs to date and discuss the implications of these associations for both our understanding and treatment of ischaemic stroke. The majority of genetic variants identified are associated with specific subtypes of ischaemic stroke, implying that these subtypes have distinct genetic architectures and pathophysiological mechanisms. The findings from the GWASs highlight the need to consider whether therapies should be subtype-specific. Further GWASs that include large cohorts are likely to provide further insights, and emerging technologies will complement and build on the GWAS findings

    A shared MHC supertype motif emerges by convergent evolution in macaques and mice, but is totally absent in human MHC molecules

    Get PDF
    The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the Dd mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These “G2” alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the “G2” alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans

    Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities

    Get PDF
    The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques’ major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC–peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses
    corecore