4,761 research outputs found

    Effects of correlated disorder on the magnetism of double exchange systems

    Full text link
    We study the effects of short-range correlated disorder arising from chemical dopants or local lattice distortions, on the ferromagnetism of 3d double exchange systems. For this, we integrate out the carriers and treat the resulting disordered spin Hamiltonian within local random phase approximation, whose reliability is shown by direct comparison with Monte Carlo simulations. We find large scale inhomogeneities in the charge, couplings and spin densities. Compared with the homogeneous case, we obtain larger Curie temperatures (TCT_{C}) and very small spin stiffnesses (DD). As a result, large variations of DTC\frac{D}{T_{C}} measured in manganites may be explained by correlated disorder. This work also provides a microscopic model for Griffiths phases in double exchange systems.Comment: accepted for publication in Phys. Rev. B (rapid comm.

    Steps and dips in the ac conductance and noise of mesoscopic structures

    Full text link
    The frequency dependence of the equilibrium ac conductance (or the noise power spectrum) through a mesoscopic structure is shown to exhibit steps and dips. The steps, at energies related to the resonances of the structure, are closely related to the partial Friedel phases of these resonances, thus allowing a direct measurement of these phases (without interferometry). The dips in the spectrum are related to a destructive interference in the absorption of energy by transitions between these resonances, in some similarity with the Fano effect.Comment: 4 pages, 2 figure

    D6 Family Symmetry and Cold Dark Matter at LHC

    Full text link
    We consider a non-supersymmetric extension of the standard model with a family symmetry based on D6 Z2 Z2, where one of Z2's is exactly conserved. This Z2 forbids the tree-level neutrino masses and simultaneously ensures the stability of cold dark matter candidates. From the assumption that cold dark matter is fermionic we can single out the D6 singlet right-handed neutrino as the best cold dark mater candidate. We find that an inert charged Higgs with a mass between 300 and 750 GeV decays mostly into an electron (or a positron) with a large missing energy, where the missing energy is carried away by the cold dark matter candidate. This will be a clean signal at LHC.Comment: 20 pages, 7 figure

    The fluctuation-dissipation theorem and the linear Glauber model

    Full text link
    We obtain exact expressions for the two-time autocorrelation and response functions of the dd-dimensional linear Glauber model. Although this linear model does not obey detailed balance in dimensions d≥2d\geq 2, we show that the usual form of the fluctuation-dissipation ratio still holds in the stationary regime. In the transient regime, we show the occurence of aging, with a special limit of the fluctuation-dissipation ratio, X∞=1/2X_{\infty}=1/2, for a quench at the critical point.Comment: Accepted for publication (Physical Review E

    Multipole Ordering and Fluctuations in f-Electron Systems

    Full text link
    We investigate effects of multipole moments in f-electron systems both from phenomenological and microscopic viewpoints. First, we discuss significant effects of octupole moment on the magnetic susceptibility in a paramagnetic phase. It is found that even within mean-field approximation, the magnetic susceptibility deviates from the Curie-Weiss law due to interactions between dipole and octupole moments. Next, we proceed to a microscopic theory for multipole ordering on the basis of a j-j coupling scheme. After brief explanation of a method to derive multipole interactions from the ff-electron model, we discuss several multipole ordered phases depending on lattice structure. Finally, we show our new development of the microscopic approach to the evaluation of multipole response functions. We apply fluctuation exchange approximation to the f-electron model, and evaluate multipole response functions.Comment: 7 pages, 4 figures, Proceedings of ASR-WYP-200

    Cubic Defects: Comparing the Eight-State-System with its Two-Level-Approximation

    Full text link
    Substitutional defects in a cubic symmetry (such as a lithium defect in a KCl host crystal) can be modeled appropriately by an eight-state-system. Usually this tunneling degree of freedom is approximated by a two-level-system. We investigate the observable differences between the two models in three contexts. First we show that the two models predict different relations between the temperature dependence of specific heat and static susceptibility. Second we demonstrate that in the presence of external forces (pressure and electric field) the eight-state-system shows features that cannot be understood within the framework of the two-level-approximation. In this context we propose an experiment for measuring the parameter for tunneling along the face diagonal. Finally we discuss the differences between the models appearing for strongly coupled pairs. Geometric selection rules and particular forms of asymmetry lead to clear differences between the two models.Comment: 19 pages, Latex, submitted to J. of Phys., some small supplement

    Optical and dc transport properties of a strongly correlated charge density wave system: exact solution in the ordered phase of the spinless Falicov-Kimball model with dynamical mean-field theory

    Full text link
    We derive the dynamical mean-field theory equations for transport in an ordered charge-density-wave phase on a bipartite lattice. The formalism is applied to the spinless Falicov-Kimball model on a hypercubic lattice at half filling. We determine the many-body density of states, the dc charge and heat conductivities, and the optical conductivity. Vertex corrections continue to vanish within the ordered phase, but the density of states and the transport coefficients show anomalous behavior due to the rapid development of thermally activated subgap states. We also examine the optical sum rule and sum rules for the first three moments of the Green's functions within the ordered phase and see that the total optical spectral weight in the ordered phase either decreases or increases depending on the strength of the interactions.Comment: 14 pages, 14 figures, submitted to Phys. Rev.

    Unstable particles versus resonances in impurity systems, conductance in quantum wires

    Get PDF
    We compute the DC conductance for a homogeneous sine-Gordon model and an impurity system of Luttinger liquid type by means of the thermodynamic Bethe ansatz and standard potential scattering theory. We demonstrate that unstable particles and resonances in impurity systems lead to a sharp increase of the conductance as a function of the temperature, which is characterized by the Breit-Wigner formula.Comment: 5 pages Latex, 1 figure replaced, version to appear in J. Phys.

    Multipole correlations in low-dimensional f-electron systems

    Full text link
    By using a density matrix renormalization group method, we investigate the ground-state properties of a one-dimensional three-orbital Hubbard model on the basis of a j-j coupling scheme. For B40≠0B_4^0 \ne 0, where B40B_4^0 is a parameter to control cubic crystalline electric field effect, one orbital is itinerant, while other two are localized. Due to the competition between itinerant and localized natures, we obtain orbital ordering pattern which is sensitive to B40B_4^0, leading to a characteristic change of Γ3g\Gamma_{3g} quadrupole state into an incommensurate structure. At B40=0B_4^0 = 0, all the three orbitals are degenerate, but we observe a peak at q=0q = 0 in Γ3g\Gamma_{3g} quadrupole correlation, indicating a ferro-orbital state, and the peak at q=πq = \pi in Γ4u\Gamma_{4u} dipole correlation, suggesting an antiferromagnetic state. We also discuss the effect of Γ4u\Gamma_{4u} octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29, 2005, Tokai
    • …
    corecore