107 research outputs found

    Quantum tangent kernel

    Full text link
    Quantum kernel method is one of the key approaches to quantum machine learning, which has the advantages that it does not require optimization and has theoretical simplicity. By virtue of these properties, several experimental demonstrations and discussions of the potential advantages have been developed so far. However, as is the case in classical machine learning, not all quantum machine learning models could be regarded as kernel methods. In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit and aim to go beyond the conventional quantum kernel method. In this case, the representation power and performance are expected to be enhanced, while the training process might be a bottleneck because of the barren plateaus issue. However, we find that parameters of a deep enough quantum circuit do not move much from its initial values during training, allowing first-order expansion with respect to the parameters. This behavior is similar to the neural tangent kernel in the classical literatures, and such a deep variational quantum machine learning can be described by another emergent kernel, quantum tangent kernel. Numerical simulations show that the proposed quantum tangent kernel outperforms the conventional quantum kernel method for an ansatz-generated dataset. This work provides a new direction beyond the conventional quantum kernel method and explores potential power of quantum machine learning with deep parameterized quantum circuits.Comment: 7 pages, 4 figure

    Update on perioperative management of patients undergoing surgery for liver cancer

    Get PDF
    Hepatocellular carcinoma is often accompanied by chronic hepatitis or cirrhosis. Preoperative evaluation of liver function and postoperative nutritional management are critical in patients with hepatocellular carcinoma who undergo liver surgery. Although the incidence of postoperative complications and death has declined in Japan over the last 10 years, postoperative complications have not been fully overcome. Therefore, surgical procedures and perioperative management must be improved. Accurate preoperative evaluations of liver function, nutrition, inflammation, and body skeletal muscle are required. Determination of the optimal surgical procedure should consider not only tumor characteristics but also the physical reserve of the patient. Nutritional management of chronic liver disorders, especially maintaining protein synthesis for postoperative protein/energy, is important. Prophylactic antibiotics are recommended for short-term use within 24 hours after surgery. Abdominal drainage is recommended for patients with cirrhosis who may develop large amounts of ascites, who are at risk of postoperative bleeding, or who may have bile leakage due to a large resection area. Postoperative exercise therapy may improve insulin resistance in patients with chronic liver damage. Implementation of an early/enhanced recovery after surgery program is recommended to reduce biological invasive responses and achieve early independence of physical activity and nutrition intake. We review the latest information on the perioperative management of patients undergoing liver resection for hepatocellular carcinoma

    Local Anesthetic Systemic Toxicity Following General and Epidural Anesthesia in A patient with a History of Muscle Relaxant-induced Anaphylaxis

    Get PDF
    We here report that a 71-year-old Japanese woman with a history of anaphylaxis induced by muscle relaxants had local anesthetic systemic toxicity (LAST) following an abdominal surgery under general anesthesia with combined spinal-epidural anesthesia without muscle relaxants. The total dosages of local anesthetics reached 0.67 mg/kg of ropivacaine and 11.5 mg/kg of lidocaine over 12.5 h to obtain sufficient muscle relaxation for surgery. Regional anesthesia is useful in cases in which muscle relaxants are to be avoided during a surgery. However, especially for a patient with risk factors and prolonged surgery, precautions should be taken to prevent LAST

    リポポリサッカライドの外因性投与はコリン欠乏 L-アミノ酸置換食誘発脂肪性肝炎モデルマウスにおいて肝線維化を促進する

    Get PDF
    Various rodent models have been proposed for basic research; however, the pathogenesis of human nonalcoholic steatohepatitis (NASH) is difficult to closely mimic. Lipopolysaccharide (LPS) has been reported to play a pivotal role in fibrosis development during NASH progression via activation of toll-like receptor 4 (TLR4) signaling. This study aimed to clarify the impact of low-dose LPS challenge on NASH pathological progression and to establish a novel murine NASH model. C57BL/6J mice were fed a choline-deficient l-amino-acid-defined (CDAA) diet to induce NASH, and low-dose LPS (0.5 mg/kg) was intraperitoneally injected thrice a week. CDAA-fed mice showed hepatic CD14 overexpression, and low-dose LPS challenge enhanced TLR4/NF-κB signaling activation in the liver of CDAA-fed mice. LPS challenge potentiated CDAA-diet-mediated insulin resistance, hepatic steatosis with upregulated lipogenic genes, and F4/80-positive macrophage infiltration with increased proinflammatory cytokines. It is noteworthy that LPS administration extensively boosted pericellular fibrosis with the activation of hepatic stellate cells in CDAA-fed mice. Exogenous LPS administration exacerbated pericellular fibrosis in CDAA-mediated steatohepatitis in mice. These findings suggest a key role for LPS/TLR4 signaling in NASH progression, and the authors therefore propose this as a suitable model to mimic human NASH.博士(医学)・甲第738号・令和2年3月16日© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    Insights into gene expression profiles induced by Socs3 depletion in keratinocytes

    Get PDF
    Specific deletion of suppressor of cytokine signaling 3 (Socs3) in keratinocytes can cause severe skin inflammation with infiltration of immune cells. The molecular mechanisms and key regulatory pathways involved in these processes remain elusive. To investigate the role of Socs3 in keratinocytes, we generated and analyzed global RNA-Seq profiles from Socs3 conditional knockout (cKO) mice of two different ages (2 and 10 weeks). Over 400 genes were significantly regulated at both time points. Samples from 2-week-old mice exhibited down-regulation of genes involved in keratin-related functions and up-regulation of genes involved in lipid metabolism. At week 10, multiple chemokine and cytokine genes were up-regulated. Functional annotation revealed that the genes differentially expressed in the 2-week-old mice play roles in keratinization, keratinocyte differentiation, and epidermal cell differentiation. By contrast, differentially expressed genes in the 10-week-old animals are involved in acute immune-related functions. A group of activator protein-1–related genes were highly up-regulated in Socs3 cKO mice of both ages. This observation was validated using qRT-PCR by SOCS3-depleted human keratinocyte–derived HaCaT cells. Our results suggest that, in addition to participating in immune-mediated pathways, SOCS3 also plays important roles in skin barrier homeostasis

    Insights into gene expression profiles induced by Socs3 depletion in keratinocytes.

    Get PDF
    Specific deletion of suppressor of cytokine signaling 3 (Socs3) in keratinocytes can cause severe skin inflammation with infiltration of immune cells. The molecular mechanisms and key regulatory pathways involved in these processes remain elusive. To investigate the role of Socs3 in keratinocytes, we generated and analyzed global RNA-Seq profiles from Socs3 conditional knockout (cKO) mice of two different ages (2 and 10 weeks). Over 400 genes were significantly regulated at both time points. Samples from 2-week-old mice exhibited down-regulation of genes involved in keratin-related functions and up-regulation of genes involved in lipid metabolism. At week 10, multiple chemokine and cytokine genes were up-regulated. Functional annotation revealed that the genes differentially expressed in the 2-week-old mice play roles in keratinization, keratinocyte differentiation, and epidermal cell differentiation. By contrast, differentially expressed genes in the 10-week-old animals are involved in acute immune-related functions. A group of activator protein-1-related genes were highly up-regulated in Socs3 cKO mice of both ages. This observation was validated using qRT-PCR by SOCS3-depleted human keratinocyte-derived HaCaT cells. Our results suggest that, in addition to participating in immune-mediated pathways, SOCS3 also plays important roles in skin barrier homeostasis

    L-カルニチンとアンギオテンシン-II1型受容体遮断薬の組み合わせは、非アルコール性脂肪肝炎ラットモデルにおける肝線維症に有益な効果を有する

    Get PDF
    Inflammation and oxidative stress contribute to the progression of nonalcoholic steatohepatitis (NASH). Hepatic fibrosis and activated hepatic stellate cells (Ac-HSCs) are attenuated by Angiotensin-II type 1 Receptor Blocker (ARB), and L-carnitine is effective for NASH by ameliorating oxidative stress, but neither agent is effective in a clinical setting. We evaluated the effect of the combination of L-carnitine and ARB on liver fibrosis using a rat NASH model. A Choline-Deficient/L-Amino Acid-defined (CDAA) diet was fed to F344 rats for 8 weeks. The rats were then divided into a control group, group receiving L-carnitine or ARB alone, and group receiving L-carnitine plus ARB. Therapeutic efficacy was assessed by evaluating liver fibrosis, liver fatty acid metabolism, and oxidative stress. ARB inhibited liver-specific tumor necrotic factor-α and LPS-binding protein, which are involved in hepatic inflammation. L-Carnitine reduced hepatic oxidative stress by rescuing hepatic sterol-regulatory elementbinding protein 1 and thiobarbituric acid reactive substances induced by the CDAA diet. Combination of L-carnitine and ARB improved liver fibrosis, with concomitant HSC suppression. Therefore, we suggest that L-carnitine and ARB are effective in suppressing liver fibrosis. Currently both drugs are in clinical use, and a combination of the two could be an effective therapy for NASH fibrosis.博士(医学)・甲第736号・令和2年3月16日Copyright © 2019 Hideto Kawaratani, Biomed J Sci & Tech Res. This is an openaccess article distributed under the terms of the Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)

    Effects of malalignment and disease activity on osteophyte formation in knees of rheumatoid arthritis patients.

    Get PDF
    PURPOSE:Rheumatoid arthritis (RA) patients with secondary osteoarthritis (OA) in a knee joint following a total knee arthroplasty (TKA) procedure have been increasing. Here, we investigated osteophyte formation in knee joints of RA patients and associated factors.METHODS:We retrospectively examined findings of 35 knees in 30 RA patients (26 females, 4 males; mean age: 63.0 years; median disease duration: 15 years) who underwent TKA, including preoperative anteroposterior view radiographs of the knee joint. Using the ImageJ software package, osteophyte size in the medial femur (MF), medial tibia (MT), lateral femur (LF), and lateral tibia (LT) regions was also determined.RESULTS:The mean femorotibial angle was 179°, while Larsen grade was 2 in 1, 3 in 12, 4 in 18, and 5 in 2 patients. Osteophyte sizes in the MF, MT, LF, and LT regions were 37.2, 17.0, 27.2, and 4.57 mm2, respectively, and significantly greater in the medial compartment (MC; MF+MT) than the lateral compartment (LC; LF+LT) (p < 0.001). In varus cases, osteophyte size in the MC was significantly larger than normal and valgus cases (p = 0.0016). Furthermore, osteophyte size in the MC was negatively correlated with the inflammatory markers C-reactive protein (r = -0.492, p = 0.0027) and erythrocyte sedimentation rate (r = -0.529, p = 0.0016), whereas that in the LC was negatively correlated with disease activity (r = -0.589, p = 0.0023).CONCLUSION:Our results suggest that alignment and disease activity influence osteophyte formation in RA patients, with secondary OA a more prominent symptom in RA patients with controlled inflammation

    肝線維化に対するファルネソイドX受容体アゴニストとジペプチジルペプチダーゼ-4阻害薬の併用効果

    Get PDF
    Aim: Non-alcoholic steatohepatitis (NASH) has a broad clinicopathological spectrum (inflammation to severe fibrosis). The farnesoid X receptor agonist obeticholic acid (OCA) ameliorates the histological features of NASH; satisfactory antifibrotic effects have not yet been reported. Here, we investigated the combined effects of OCA + a dipeptidyl peptidase-4 inhibitor (sitagliptin) on hepatic fibrogenesis in a rat model of NASH. Methods: Fifty Fischer 344 rats were fed a choline-deficient L-amino-acid-defined (CDAA) diet for 12 weeks. The in vitro and in vivo effects of OCA + sitagliptin were assessed along with hepatic fibrogenesis, lipopolysaccharide-Toll-like receptor 4 (TLR4) regulatory cascade and intestinal barrier function. Direct inhibitory effects of OCA + sitagliptin on activated hepatic stellate cells (Ac-HSCs) were assessed in vitro. Results: Treatment with OCA + sitagliptin potentially inhibited hepatic fibrogenesis along with Ac-HSC proliferation and hepatic transforming growth factor (TGF)-β1, α1(I)-procollagen, and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA expression and hydroxyproline levels. Obeticholic acid inhibited hepatic TLR4 expression and increased hepatic matrix metalloproteinase-2 expression. Obeticholic acid decreased intestinal permeability by ameliorating CDAA diet-induced zonula occludens-1 disruption, whereas sitagliptin directly inhibited Ac-HSC proliferation. The in vitro suppressive effects of OCA + sitagliptin on TGF-β1 and α1(I)-procollagen mRNA expression and p38 phosphorylation in Ac-HSCs were almost consistent. Sitagliptin directly inhibited the regulation of Ac-HSC. Conclusions: Treatment with OCA + sitagliptin synergistically affected hepatic fibrogenesis by counteracting endotoxemia induced by intestinal barrier dysfunction and suppressing Ac-HSC proliferation. Thus, OCA + sitagliptin could be a promising therapeutic strategy for NASH.博士(医学)・甲第737号・令和2年3月16日© 2019 The Japan Society of HepatologyThis is the peer reviewed version of the following article: [https://onlinelibrary.wiley.com/doi/full/10.1111/hepr.13385], which has been published in final form at [https://doi.org/10.1111/hepr.13385]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions
    corecore