51 research outputs found

    Glucoregulatory Consequences and Cardiorespiratory Parameters in Rats Exposed to Chronic–Intermittent Hypoxia: Effects of the Duration of Exposure and Losartan

    Get PDF
    Background: Obstructive sleep apnea (OSA) is associated with glucose intolerance. Both chronic sleep disruption and recurrent blood oxygen desaturations (chronic–intermittent hypoxia, CIH) may cause, or exacerbate, metabolic derangements. Methods: To assess the impact of CIH alone, without accompanying upper airway obstructions, on the counter-regulatory response to glucose load and cardiorespiratory parameters, we exposed adult male Sprague-Dawley rats to CIH or sham room air exchanges for 10 h/day for 7, 21, or 35 days and then, 1 day after conclusion of CIH exposure, conducted intravenous glucose-tolerance tests (ivgtt) under urethane anesthesia. Additional rats underwent 35 days of CIH followed by 35 days of regular housing, or had 35 day-long CIH exposure combined with daily administration of the type 1 angiotensin II receptor antagonist, losartan (15 mg/kg, p.o.), and then were also subjected to ivgtt. Results: Compared with the corresponding control groups, CIH rats had progressively reduced glucose-stimulated insulin release and impaired glucose clearance, only mildly elevated heart rate and/or arterial blood pressure and slightly reduced respiratory rate. The differences in insulin release between the CIH and sham-treated rats disappeared in the rats normally housed for 35 days after 35 days of CIH/sham exposure. The losartan-treated rats had improved insulin sensitivity, with no evidence of suppressed insulin release in the CIH group. Conclusion: In adult rats, the glucose-stimulated insulin release is gradually suppressed with the duration of exposure to CIH, but the effect is reversible. Elimination of the detrimental effect of CIH on insulin release by losartan suggests that CIH disrupts glucoregulation through angiotensin/catecholaminergic pathways. Accordingly, treatment with continuous positive airway pressure may ameliorate pre-diabetic conditions in OSA patients, in part, by reducing sympathoexcitatory effects of recurrent nocturnal hypoxia

    Sex differences in stress-induced sleep deficits

    Get PDF
    Sleep disruptions are hallmarks in the pathophysiology of several stress-related disorders, including Major Depressive Disorder (MDD) and Post-Traumatic Stress Disorder (PTSD), both known to disproportionately affect female populations. Although previous studies have attempted to investigate disordered sleep in women, few studies have explored and compared how repeated stress affects sleep in both sexes in either human or animal models. We have previously shown that male rats exhibit behavioral and neuroendocrine habituation to 5 days of repeated restraint, whereas females do not; additional days of stress exposure are required to observe habituation in females. This study examined sex differences in sleep measures prior to, during, and after repeated restraint stress in adult male and female rats. Our data reveal that repeated stress increased time spent awake and decreased slow-wave sleep (SWS) and REM sleep (REMS) in females, and these effects persisted over 2 days of recovery. In contrast, the effects of stress on males were transient. These insomnia-like symptoms were accompanied by a greater number of exaggerated motor responses to waking from REMS in females, a phenotype similar to trauma-related nightmares. In sum, these data demonstrate that repeated stress produces disruptions in sleep that persist days after the stress is terminated in female rats. These disruptions in sleep produced by 5 days of repeated restraint may be due to their lack of habituation

    Passive Coping Strategies During Repeated Social Defeat Are Associated With Long-Lasting Changes in Sleep in Rats

    Get PDF
    Exposure to severe stress has immediate and prolonged neuropsychiatric consequences and increases the risk of developing Posttraumatic Stress Disorder (PTSD). Importantly, PTSD develops in only a subset of individuals after exposure to a traumatic event, with the understanding of this selective vulnerability being very limited. Individuals who go on to develop PTSD after a traumatic experience typically demonstrate sleep disturbances including persistent insomnia and recurrent trauma-related nightmares. We previously established a repeated social defeat paradigm in which rats segregate into either passively or actively coping subpopulations, and we found that this distinction correlates with measures of vulnerability or resilience to stress. In this study, we examined differences between these two behavioral phenotypes in sleep changes resulting from repeated social defeat stress. Our data indicate that, compared to control and actively coping rats, passively coping rats have less slow-wave sleep (SWS) for at least 2 weeks after the end of a series of exposures to social defeat. Furthermore, resilient rats show less exaggerated motor activation at awakenings from rapid eye movement (REM) sleep and less fragmentation of REM sleep compared to control and passively coping rats. Together, these data associate a passive coping strategy in response to repeated social defeat stress with persisting sleep disturbances. Conversely, an active coping strategy may be associated with resilience to sleep disturbances. These findings may have both prognostic and therapeutic applications to stress-associated neuropsychiatric disorders, including PTSD

    Sleep–Wake Control of the Upper Airway by Noradrenergic Neurons, with and without Intermittent Hypoxia

    Full text link
    Dispute resolution processes can be separated into two categories; the formal and the informal. Though the boundaries of these divisions are fluid, formal processes tend to embody a greater number of structural attributes than their less formal counterparts. The conventional adversarial process exemplifies the first type - a process characterized by a series of clearly defined legal rules and procedures - and the mediation process is representative of the second - a dispute resolution process which lacks any semblance of formal structure. The relationship between formal and informal methods of dispute processing is symbiotic. It is common to address criticisms of the one process by introducing features of the other. Attacks on adversarial justice culminate in the removal or softening of many of its formal features. Likewise, the response to complaints about mediation is the introduction of formal attributes. The recent growth of mediation has generated considerable criticism of this dispute processing venue and as anticipated one response is the suggestion that mediation be formalized. The formal feature being considered as a remedy is the creation a class of professional mediators. This thesis questions the value of formalizing the mediation process. Professionalization has the potential to nullify many of the benefits that mediation sought to bring to dispute resolution. The evidence intimates that professional regulation increases costs, suppresses diversity of occupational practice and inaugurates a form of inequality. These empirical manifestations suggest that when this institutional structure is superimposed onto the mediation process, there is a distinct possibility that professionalization will eliminate the advantages associated with informal dispute resolution and recreate many of the problems encountered with the adversarial justice process. Two primary candidates of professional regulation are being considered, licensure and certification. This thesis suggests that regardless of the regulatory scheme selected, much of the social utility of mediation is lost when this occupation is regulated. In the final analysis, the issue becomes how to achieve an appropriate equilibrium between formal and informal dispute resolution processes. Injecting a moderate amount of professionalism into the mediation process may achieve this balance but not without sacrificing some of the many advantages of informalism

    Modulation of Motoneuronal Activity With Sleep-Wake States and Motoneuronal Gene Expression Vary With Circadian Rest-Activity Cycle

    No full text
    In both nocturnal and diurnal mammals, sleep and wake states differentially aggregate during the rest and active phases of circadian cycle. Closely associated with this rhythm are prominent changes in motor activity. Here, we quantified the magnitudes of electromyographic activity (EMG) measured separately during different sleep-wake states across the rest-activity cycle, thereby separating amplitude measurements from the known dependance of the timing of wake and sleep on the phase of circadian rest-activity cycle. In seven rats chronically instrumented for electroencephalogram and EMG monitoring, nuchal and lingual muscle EMGs were measured as a commonly used postural output in behavioral sleep studies and as a cranial motor output with potential clinical relevance in obstructive sleep apnea (OSA) syndrome, respectively. We found that, for both motor outputs, EMG measured during wake episodes was significantly higher during the active phase, than during the rest phase, of circadian cycle. The corresponding patterns observed during slow-wave sleep (SWS) and rapid eye movement sleep (REMS) were different. During SWS, lingual EMG was very low and did not differ between the rest and active phase, whereas nuchal EMG had pattern similar to that during wakefulness. During REMS, lingual EMG was, paradoxically, higher during the rest phase due to increased twitching activity, whereas nuchal EMG was very low throughout the rest and active periods (postural atonia). In the follow-up comparison of differences in transcript levels in tissue samples obtained from the medullary hypoglossal motor nucleus and inferior olive (IO) at rest onset and active period onset conducted using microarrays, we identified significant differences for multiple transcripts representing the core members of the molecular circadian clock and other genes important for the regulation of cell metabolism and activity (up to n = 130 at p < 0.001). Collectively, our data indicate that activity of motoneurons is regulated to optimally align it with the rest-activity cycle, with the process possibly involving transcriptional mechanisms at the motoneuronal level. Our data also suggest that OSA patients may be relatively better protected against sleep-related upper airway obstructions during REMS episodes generated during the rest phase, than during active phase, of the circadian cycle

    Hypoglossal premotor neurons of the intermediate medullary reticular region express cholinergic markers

    No full text
    The inspiratory drive to hypoglossal (XII) motoneurons originates in the caudal medullary intermediate reticular (IRt) region. This drive is mainly glutamatergic, but little is known about the neurochemical features of IRt XII premotor neurons. Prompted by the evidence that XII motoneuronal activity is controlled by both muscarinic (M) and nicotinic cholinergic inputs and that the IRt region contains cells that express choline acetyltransferase (ChAT), a marker of cholinergic neurons, we investigated whether some IRt XII premotor neurons are cholinergic. In seven rats, we applied single-cell reverse transcription-polymerase chain reaction to acutely dissociated IRt neurons retrogradely labeled from the XII nucleus. We found that over half (21/37) of such neurons expressed mRNA for ChAT and one-third (13/37) also had M2 receptor mRNA. In contrast, among the IRt neurons not retrogradely labeled, only 4 of 29 expressed ChAT mRNA (P < 0.0008) and only 3 of 29 expressed M2 receptor mRNA (P < 0.04). The distributions of other cholinergic receptor mRNAs (M1, M3, M4, M5, and nicotinic α4-subunit) did not differ between IRt XII premotor neurons and unlabeled IRt neurons. In an additional three rats with retrograde tracers injected into the XII nucleus and ChAT immunohistochemistry, 5–11% of IRt XII premotor neurons located at, and caudal to, the area postrema were ChAT positive, and 27–48% of ChAT-positive caudal IRt neurons were retrogradely labeled from the XII nucleus. Thus the pre- and postsynaptic cholinergic effects previously described in XII motoneurons may originate, at least in part, in medullary IRt neurons

    Inhibition of A5 Neurons Facilitates the Occurrence of REM Sleep-Like Episodes in Urethane-Anesthetized Rats: A New Role for Noradrenergic A5 Neurons?

    No full text
    When rapid eye movement (REM) sleep occurs, noradrenergic cells become silent, with the abolition of activity in locus coeruleus (LC) neurons seen as a key event permissive for the occurrence of REM sleep. However, it is not known whether silencing of other than LC noradrenergic neurons contributes to the generation of REM sleep. In urethane-anesthetized rats, stereotyped REM sleep-like episodes can be repeatedly elicited by injections of the cholinergic agonist, carbachol, into a discrete region of the dorsomedial pons. We used this preparation to test whether inhibition of ventrolateral pontine noradrenergic A5 neurons only, or together with LC neurons, also can elicit REM sleep-like effects. To silence noradrenergic cells, we sequentially injected the alpha2-adrenergic agonist clonidine (20-40 nl, 0.75 mM) into both A5 regions and then the LC. In 2 rats, successful bilateral clonidine injections into the A5 region elicited the characteristic REM sleep-like episodes (hippocampal theta rhythm, suppression of hypoglossal nerve activity, reduced respiratory rate). In 5 rats, bilateral clonidine injections into the A5 region and then into one LC triggered REM sleep-like episodes, and in 2 rats injections into both A5 and then both LC were needed to elicit the effect. In contrast, in 3 rats, uni- or bilateral clonidine injections only into the LC had no effect, and clonidine injections placed in another 6 rats outside of the A5 and/or LC regions were without effect. The REM sleep-like episodes elicited by clonidine had similar magnitude of suppression of hypoglossal nerve activity (by 75%), similar pattern of hippocampal changes, and similar durations (2.5-5.3 min) to the episodes triggered in the same preparation by carbachol injections into the dorsomedial pontine reticular formation. Thus, silencing of A5 cells may importantly enable the occurrence of REM sleep-like episodes, at least under anesthesia. This is a new role for noradrenergic A5 neurons
    corecore