12 research outputs found

    A Regulatory Network for Coordinated Flower Maturation

    Get PDF
    For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs

    Involvement of DAD1-like lipases in response to salt and osmotic stress in Arabidopsis thaliana

    No full text
    Acyl hydrolases remodel biological membranes and release signaling molecules in response to a variety of biotic and abiotic stresses. After wounding or pathogen treatment lipases are necessary to release fatty acids as substrate for jasmonate biosynthesis. In osmotic stressed tissue they maintain integrity and functionality of membranes and during senescence lipases destroy and recycle membranes. Recently the role of several acyl hydrolases including DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) and DAD1-like lipase, e.g., DONGLE (DGL) and the phospholipase A (PLA) PLA-Iγ1 in jasmonate biosynthesis after wounding were investigated and functional redundancy within this family has been stated. Here we report necessity of diverse DAD1-like lipases in response to salt and sorbitol treatment. The lipase PLA-Iγ1 and PLA-Iβ2, which were both impaired in wound response, were also affected in response to osmotic stress in seed germination assays. Based on our observations and interpretations of transcription analyses generated by AtGenExpress project we speculate about more general roles of the DAD1-like lipase in diverse biological processes

    Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene

    No full text

    Biosynthesis and Metabolism of Jasmonates

    No full text

    Dynamics of Membrane Potential Variation and Gene Expression Induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis

    No full text

    Signaling in Plant Resistance Responses: Divergence and Cross-Talk of Defense Pathways

    No full text

    Jasmonates in Plant Growth and Stress Responses

    No full text
    corecore