1,100 research outputs found

    4-Phenyl-1H-imidazole-2(3H)-thione

    Get PDF
    In the asymmetric unit of the title compound, C9H8N2S, there are four symmetry-independent mol­ecules (Z′ = 4). The geometrical features of these mol­ecules are quite similar: in the normal probability plots the R 2 correlation factors for bond lengths and angles are generally around 0.95. The twist angles between the imidazole and phenyl rings (which are planar within 3σ) range from 9.0 (6) to 13.1 (5)°. In the crystal, pairs of independent molecules are joined by linear N—H⋯S and weak C—H⋯S hydrogen bonds, forming infinite ribbons, of the type ∼ABABAB∼ and ∼CDCDCD∼, propagating along [110]. Second-order hydrogen-bonded R 2 2(8) rings are formed via inter­weaving infinite C 2 2(8) chains

    Adsorption of arsenate on Fe-(hydr)oxide

    Get PDF
    Adsorption using metal oxide materials has been demonstrated to be an effective technique to remove hazardous materials from water, due to its easy operation, low cost, and high efficiency. The high number of oxyanions in aquatic ecosystems causes serious pollution problems. Removal of arsenate (H2AsO4 -), is one of the major concerns, since it is a highly toxic anion for life. Within the metal oxides, the iron oxide is considered as a suitable material for the elimination of oxyanions. The adsorption of H2AsO4 - on Fe-(hydr)oxide is through the formation of inner or outer sphere complexes. In this work, through computational methods, a complete characterization of the adsorbed surface complexes was performed. Three different pH conditions were simulated (acidic, intermediate and basic), and it was found that, the thermodynamic favourability of the different adsorbed complexes was directly related to the pH. Monodentate complex (MM1) was the most thermodynamically favourable complex with an adsorption energy of -96.0kJ/mol under intermediate pH conditions. © Published under licence by IOP Publishing Ltd

    News - Augusta University, Reese Library

    Get PDF

    Evaporation kinetics of Mg2SiO4 crystals and melts from molecular dynamics simulations

    Get PDF
    Computer simulations based on the molecular dynamics (MD) technique were used to study the mechanisms and kinetics of free evaporation from crystalline and molten forsterite (i.e., Mg2SiO4) on an atomic level. The interatomic potential employed for these simulations reproduces the energetics of bonding in forsterite and in gas-phase MgO and SiO2 reasonably accurately. Results of the simulation include predicted evaporation rates, diffusion rates, and reaction mechanisms for Mg2SiO4(s or l) yields 2Mg(g) + 20(g) + SiO2(g)

    Constraints on physical computers in holographic spacetimes

    Get PDF
    Within the setting of the AdS/CFT correspondence, we ask about the power of computers in the presence of gravity. We show that there are computations on n qubits which cannot be implemented inside of black holes with entropy less than O(2n). To establish our claim, we argue computations happening inside the black hole must be implementable in a programmable quantum processor, so long as the inputs and description of the unitary to be run are not too large. We then prove a bound on quantum processors which shows many unitaries cannot be implemented inside the black hole, and further show some of these have short descriptions and act on small systems. These unitaries with short descriptions must be computationally forbidden from happening inside the black hole.Depto. de Análisis Matemático y Matemática AplicadaFac. de Ciencias MatemáticasFALSEunpu
    corecore