9 research outputs found

    Stem‐cell–based therapies to enhance peripheral nerve regeneration

    Full text link
    Peripheral nerve injury remains a major cause of morbidity in trauma patients. Despite advances in microsurgical techniques and improved understanding of nerve regeneration, obtaining satisfactory outcomes after peripheral nerve injury remains a difficult clinical problem. There is a growing body of evidence in preclinical animal studies demonstrating the supportive role of stem cells in peripheral nerve regeneration after injury. The characteristics of both mesoderm‐derived and ectoderm‐derived stem cell types and their role in peripheral nerve regeneration are discussed, specifically focusing on the presentation of both foundational laboratory studies and translational applications. The current state of clinical translation is presented, with an emphasis on both ethical considerations of using stems cells in humans and current governmental regulatory policies. Current advancements in cell‐based therapies represent a promising future with regard to supporting nerve regeneration and achieving significant functional recovery after debilitating nerve injuries.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154610/1/mus26760.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154610/2/mus26760_am.pd

    A survey of current state of training of plastic surgery residents

    Full text link
    Abstract Background Plastic surgery training is undergoing major changes however there is paucity of data detailing the current state of training as perceived by plastic surgical trainees. Our aim was to determine the quality of training as perceived by the current trainee pool and their future plans. Methods A 25-item anonymous survey with three discrete sections (demographics, quality of training, and post-graduate career plans) was developed and distributed to plastic surgery residents during the academic year 2013. With the confidence interval of 95% and margin of error of 10%, our target response rate was 87 responders. Results We received a total of 114 respondents with all levels of Post Graduate Year in training represented. Upon comparison of residents with debt of 250,000, those with higher debt were significantly less interested in fellowship training (p value 0.05) and were more likely to pursue private practice (p value <0.01). Disciplines within plastic surgery least offered as a separate rotation were microsurgery (45%) followed by aesthetic surgery (33%). 53.7% of the residents felt that they were least trained in aesthetic surgery followed by burn surgery 45.4%. Of note 56.4% intended to seek additional training after residency. Moreover residents with an average of 6.4 months of experience in an individual subspecialty were more likely to feel comfortable with that specialty. Conclusions This survey highlights the areas and subspecialties that deserve attention as perceived by the current trainee pool.https://deepblue.lib.umich.edu/bitstream/2027.42/137662/1/13104_2017_Article_2561.pd

    Dermal Sensory Regenerative Peripheral Nerve Interface for Reestablishing Sensory Nerve Feedback in Peripheral Afferents in the Rat

    Get PDF
    Background: Without meaningful, intuitive sensory feedback, even the most advanced myoelectric devices require significant cognitive demand to control. The dermal sensory regenerative peripheral nerve interface (DS-RPNI) is a biological interface designed to establish high-fidelity sensory feedback from prosthetic limbs. Methods: DS-RPNIs were constructed in rats by securing fascicles of residual sensory peripheral nerves into autologous dermal grafts, with the objectives of confirming regeneration of sensory afferents within DS-RPNIs and establishing the reliability of afferent neural response generation with either mechanical or electrical stimulation. Results: Two months after implantation, DS-RPNIs were healthy and displayed well-vascularized dermis with organized axonal collaterals throughout and no evidence of neuroma. Electrophysiologic signals were recorded proximal from DS-RPNI's sural nerve in response to both mechanical and electrical stimuli and compared with (1) full-thickness skin, (2) deepithelialized skin, and (3) transected sural nerves without DS-RPNI. Mechanical indentation of DS-RPNIs evoked compound sensory nerve action potentials (CSNAPs) that were like those evoked during indentation of full-thickness skin. CSNAP firing rates and waveform amplitudes increased in a graded fashion with increased mechanical indentation. Electrical stimuli delivered to DS-RPNIs reliably elicited CSNAPs at low current thresholds, and CSNAPs gradually increased in amplitude with increasing stimulation current. Conclusions: These findings suggest that afferent nerve fibers successfully reinnervate DS-RPNIs, and that graded stimuli applied to DS-RPNIs produce proximal sensory afferent responses similar to those evoked from normal skin. This confirmation of graded afferent signal transduction through DS-RPNI neural interfaces validate DS-RPNI's potential role of facilitating sensation in human-machine interfacing. Clinical Relevance Statement: The DS-RPNI is a novel biotic-abiotic neural interface that allows for transduction of sensory stimuli into neural signals. It is expected to advance the restoration of natural sensation and development of sensorimotor control in prosthetics.</p

    NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma

    Get PDF
    : Pain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types. Consequently, NGF-responsive axonal invasion occurs which precedes osteocartilaginous differentiation. Surgical denervation impedes axonal ingrowth, with significant delays in cartilage and bone formation. Likewise, either deletion of Ngf or two complementary methods to inhibit its receptor TrkA (Tropomyosin receptor kinase A) lead to similar delays in axonal invasion and osteochondral differentiation. Mechanistically, single-cell sequencing suggests a shift from TGFÎČ to FGF signaling activation among pre-chondrogenic cells after denervation. Finally, analysis of human pathologic specimens and databases confirms the relevance of NGF-TrkA signaling in human disease. In sum, NGF-mediated TrkA-expressing axonal ingrowth drives abnormal osteochondral differentiation after soft tissue trauma. NGF-TrkA signaling inhibition may have dual therapeutic use in soft tissue trauma, both as an analgesic and negative regulator of aberrant stem cell differentiation
    corecore