18 research outputs found

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Generation of HIV-1-specific T cells by electroporation of T-cell receptor RNA

    Full text link
    BACKGROUND: HIV-1-specific cytotoxic T lymphocytes, which recognize conserved epitopes of the virus, are correlated with prolonged survival of infected individuals. Unfortunately, most HIV-1-infected patients are unable to generate such an immune response. Antigen-specific cytotoxic T lymphocytes can be generated by T-cell receptor transfer. This is commonly done by retroviral transduction, which is complicated and poses the threat of stable genetic alteration of autologous cells. METHODS: We reprogrammed primary CD8+ T cells by electroporation of RNA, which encoded an HIV-1-pol- and an HIV-1-gag-specific T-cell receptor recognizing the human leukocyte antigen-A2 restricted epitopes ILKEPVHGV and SLYNTVATL, respectively. RESULTS: These reprogrammed cells specifically produced the proinflammatory cytokines interleukin-2, tumor necrosis factor-alpha, and interferon-gamma after stimulation with target cells that presented the corresponding peptides, and were able to lyse these targets efficiently and specifically. The lytic avidities of the HIV-1-pol- and HIV-1-gag-TCR-RNA-electroporated CD8+ T cells were within the same range than those of the parental cytotoxic T lymphocytes. Most importantly, HIV-1-gag-reprogrammed T cells recognized target cells that presented endogenously processed antigen, which resulted in cytokine production and lysis. CONCLUSION: It is shown here for the first time that functional transfer of virus-specific T-cell receptors by RNA electroporation is feasible, and represents an innovative, safe, and easy method to generate virus-specific T cells, avoiding the risks of retroviral transduction

    Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): reversal by physicochemical, alginase, and specific monoclonal antibody treatments.

    Get PDF
    The mucoid exopolysaccharide (MEP or alginate) of Pseudomonas aeruginosa is thought to be a virulence factor for this organism by virtue of its ability to suppress local host defense mechanisms. We purified MEP from clinical isolates of mucoid P. aeruginosa, subjected it to degradation by ultrasonication, heat, alkali, and alginase, and reacted it with monoclonal antibodies specific for MEP epitopes. Partial reversal or complete abrogation of the inhibitory effects of alginate on human neutrophil random migration, chemotaxis, and hexose monophosphate shunt activity and lymphocyte transformation were observed following most of these treatments. Physicochemical analysis of degraded MEP revealed a positive correlation between changes in molecular size and viscosity and loss of biological properties. The biological properties of MEP were also shown to be dependent on the structural integrity of the O-acetyl groups substituted for the mannuronic acid residues. The results show that the capacity of MEP to suppress neutrophil and lymphocyte functions is dependent on its acetyl content and the physical properties of large size and viscosity and may provide part of the explanation for the propensity of mucoid P. aeruginosa to persist in the airways of patients with cystic fibrosis. These findings highlight the important role of MEP as one of the virulence factors in the pathogenesis of inflammatory damage and subsequent pulmonary destruction in cystic fibrosis

    Interactions between Hepatitis C Virus and the human Apolipoprotein H acute phase protein : a tool for a sensitive detection of the virus

    Get PDF
    The Hepatitis C virus (HCV) infection exhibits a high global prevalence frequently associated with hepatocellular carcinoma, taking years to develop. Despite the standardization of highly sensitive HCV quantitative RT-PCR (qRT-PCR) detection methods, false-negative diagnoses may be generated with current methods, mainly due to the presence of PCR inhibitors and/or low viral loads in the patient's sample. These false-negative diagnoses impact both public health systems, in developing countries, and an in lesser extent, in developed countries, including both the risk of virus transmission during organ transplantation and/or blood transfusion and the quality of the antiviral treatment monitoring. To adopt an appropriate therapeutic strategy to improve the patient's prognosis, it is urgent to increase the HCV detection sensitivity. Based upon previous studies on HBV, we worked on the capacity of the scavenger acute phase protein, Apolipoprotein H (ApoH) to interact with HCV. Using different approaches, including immunoassays, antibody-inhibition, oxidation, ultracentrifugation, electron microscopy and RT-PCR analyses, we demonstrated specific interactions between HCV particles and ApoH. Moreover, when using a two-step HCV detection process, including capture of HCV by ApoH-coated nanomagnetic beads and a home-made real-time HCV-RT-PCR, we confirmed the presence of HCV for all samples from a clinical collection of HCV-seropositive patients exhibiting an RT-PCR COBAS (R) Taq-Man (R) HCV Test, v2.0 (COBAS)-positive result. In contrast, for HCV-seropositive patients with either low HCV-load as determined with COBAS or exhibiting HCV-negative COBAS results, the addition of the two-step ApoH-HCV-capture and HCV-detection process was able to increase the sensitivity of HCV detection or more interestingly, detect in a genotype sequence-independent manner, a high-proportion (44%) of HCV/RNA-positive among the COBAS HCV-negative patients. Thus, the immune interaction between ApoH and HCV could be used as a sample preparation tool to enrich and/or cleanse HCV patient's samples to enhance the detection sensitivity of HCV and therefore significantly reduce the numbers of false-negative HCV diagnosis results
    corecore