7 research outputs found

    Untersuchungen zur epithelialen-mesenchymalen Transition im Glioblastom und Glioblastomrezidiv

    Get PDF
    Das Glioblastoma multiforme zählt zu den Tumorarten, für die derzeit keine kurativen Therapien verfügbar sind. In der Tumorentwicklung und dem Fortschreiten der Erkrankung wurden molekularbiologische Prozesse beschrieben, wie die epitheliale-mesenchymale Transition (EMT), die einen Beitrag zur erhöhten Invasivität der Tumorzellen leisten und letztendlich das Ansprechen auf die Behandlung reduzieren. Im Rahmen dieser Dissertation wurden verschiedene Marker der EMT in einem Vergleich von solidem gepaartem Primär- und Rezidiv-Glioblastom-Gewebe mittels quantitativer Real-Time Polymerasekettenreaktion (PCR) und Immunfluoreszenzdoppelfärbung untersucht, um die in der Progression des Tumors ablaufenden Prozesse weiter erforschen zu können. Zudem erfolgte eine Testung der Glioblastom-Zelllinie T98G auf Einflüsse, denen Tumorzellen auch im Organismus ausgeliefert sind. Dabei wurden die Auswirkungen des Standardchemotherapeutikums Temozolomid untersucht, welches leitliniengerecht in der Therapie des Glioblastoms angewandt wird, sowie die des Proteins Transforming Growth Factor ß1, das von Tumorzellen und der Mikroumgebung sezerniert wird und als Induktor der epithelialen-mesenchymalen Transition fungiert

    Effects of the Anti-Tumorigenic Agent AT101 on Human Glioblastoma Cells in the Microenvironmental Glioma Stem Cell Niche

    No full text
    Glioblastoma (GBM) is a barely treatable disease due to its profound chemoresistance. A distinct inter- and intratumoral heterogeneity reflected by specialized microenvironmental niches and different tumor cell subpopulations allows GBMs to evade therapy regimens. Thus, there is an urgent need to develop alternative treatment strategies. A promising candidate for the treatment of GBMs is AT101, the R(-) enantiomer of gossypol. The present study evaluates the effects of AT101, alone or in combination with temozolomide (TMZ), in a microenvironmental glioma stem cell niche model of two GBM cell lines (U251MG and U87MG). AT101 was found to induce strong cytotoxic effects on U251MG and U87MG stem-like cells in comparison to the respective native cells. Moreover, a higher sensitivity against treatment with AT101 was observed upon incubation of native cells with a stem-like cell-conditioned medium. This higher sensitivity was reflected by a specific inhibitory influence on the p-p42/44 signaling pathway. Further, the expression of CXCR7 and the interleukin-6 receptor was significantly regulated upon these stimulatory conditions. Since tumor stem-like cells are known to mediate the development of tumor recurrences and were observed to strongly respond to the AT101 treatment, this might represent a promising approach to prevent the development of GBM recurrences

    Influence of Simulated Deep Brain Stimulation on the Expression of Inflammatory Mediators by Human Central Nervous System Cells In Vitro

    No full text
    Deep brain stimulation (DBS) seems to modulate inflammatory processes. Whether this modulation leads to an induction or suppression of inflammatory mediators is still controversially discussed. Most studies of the influence of electrical stimulation on inflammation were conducted in rodent models with direct current stimulation and/or long impulses, both of which differ from the pattern in DBS. This makes comparisons with the clinical condition difficult. We established an in-vitro model that simulated clinical stimulation patterns to investigate the influence of electrical stimulation on proliferation and survival of human astroglial cells, microglia, and differentiated neurons. We also examined its influence on the expression of the inflammatory mediators C-X-C motif chemokine (CXCL)12, CXCL16, CC-chemokin-ligand-2 (CCL)2, CCL20, and interleukin (IL)-1β and IL-6 by these cells using quantitative polymerase chain reaction. In addition, protein expression was assessed by immunofluorescence double staining. In our model, electrical stimulation did not affect proliferation or survival of the examined cell lines. There was a significant upregulation of CXCL12 in the astrocyte cell line SVGA, and of IL-1β in differentiated SH-SY5Y neuronal cells at both messenger RNA and protein levels. Our model allowed a valid examination of chemokines and cytokines associated with inflammation in human brain cells. With it, we detected the induction of inflammatory mediators by electrical stimulation in astrocytes and neurons

    Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1

    No full text
    Glioblastoma multiforme (GBM) is a malignant brain tumor that evades therapy regimens. Since cellular dormancy is one strategy for surviving, and since chemokines determine the environmental conditions in which dormancy occurs, we investigated how chemokines affect temozolomide (TMZ)-promoted cellular dormancy entry and exit in GBM cells. TMZ administration over ten days promoted cellular dormancy entry, whereas discontinuing TMZ for a further 15 days resulted in resumption of proliferation. Co-administration of a chemokine cocktail containing CXCL12, CXCL16, and CX3CL1 resulted in both delayed entry and exit from cellular dormancy. A microarray-based transcriptome analysis in LN229 GBM cells revealed that cellular dormancy entry was characterized by an increased expression of CCL2 and SAA2, while THSD4, FSTL3, and VEGFC were upregulated during dormancy exit. Co-stimulation with the chemokine cocktail reduced upregulation of identified genes. After verifying the appearance of identified genes in human GBM primary cultures and ex vivo samples, we clarified whether each chemokine alone impacts cellular dormancy mechanisms using specific antagonists and selective CRISPR/Cas9 clones. While expression of CCL2 and SAA2 in LN229 cells was altered by the CXCL12-CXCR4-CXCR7 axis, CXCL16 and CX3CL1 contributed to reduced upregulation of THSD4 and, to a weaker extent, of VEGFC. The influence on FSTL3 expression depended on the entire chemokine cocktail. Effects of chemokines on dormancy entry and exit-associated genes were detectable in human GBM primary cells, too, even if in a more complex, cell-specific manner. Thus, chemokines play a significant role in the regulation of TMZ-promoted cellular dormancy in GBMs

    Intratumoral Distribution of Lactate and the Monocarboxylate Transporters 1 and 4 in Human Glioblastoma Multiforme and Their Relationships to Tumor Progression-Associated Markers

    No full text
    (1) Background: Metabolic reprogramming has been postulated to be one of the hallmarks of cancer, thus representing a promising therapeutic target also in glioblastoma multiforme (GBM). Hypoxic tumor cells produce lactate, and monocarboxylate transporters (MCTs) play an important role in its distribution; (2) Methods: We examined the distribution of lactate by multi voxel magnetic resonance spectroscopic imaging and ELISA in glioblastoma multiforme (GBM) patients. In addition, we investigated the expression and cellular localization of MCT1, MCT4, and of several markers connected to tumor progression by quantitative PCR and immunofluorescence double-staining in human GBM ex vivo tissues; (3) Results: The highest lactate concentration was found at the center of the vital parts of the tumor. Three main GBM groups could be distinguished according to their regional gene expression differences of the investigated genes. MCT1 and MCT4 were found on cells undergoing epithelial to mesenchymal transition and on tumor stem-like cells. GBM cells revealing an expression of cellular dormancy markers, showed positive staining for MCT4; (4) Conclusion: Our findings indicate the existence of individual differences in the regional distribution of MCT1 and MCT4 and suggest that both transporters have distinct connections to GBM progression processes, which could contribute to the drug resistance of MCT-inhibitors

    Fabrication and Modelling of a Reservoir-Based Drug Delivery System for Customizable Release

    No full text
    Localized therapy approaches have emerged as an alternative drug administration route to overcome the limitations of systemic therapies, such as the crossing of the blood–brain barrier in the case of brain tumor treatment. For this, implantable drug delivery systems (DDS) have been developed and extensively researched. However, to achieve an effective localized treatment, the release kinetics of DDS needs to be controlled in a defined manner, so that the concentration at the tumor site is within the therapeutic window. Thus, a DDS, with patient-specific release kinetics, is crucial for the improvement of therapy. Here, we present a computationally supported reservoir-based DDS (rDDS) development towards patient-specific release kinetics. The rDDS consists of a reservoir surrounded by a polydimethylsiloxane (PDMS) microchannel membrane. By tailoring the rDDS, in terms of membrane porosity, geometry, and drug concentration, the release profiles can be precisely adapted, with respect to the maximum concentration, release rate, and release time. The release is investigated using a model dye for varying parameters, leading to different distinct release profiles, with a maximum release of up to 60 days. Finally, a computational simulation, considering exemplary in vivo conditions (e.g., exchange of cerebrospinal fluid), is used to study the resulting drug release profiles, demonstrating the customizability of the system. The establishment of a computationally supported workflow, for development towards a patient-specific rDDS, in combination with the transfer to suitable drugs, could significantly improve the efficacy of localized therapy approaches

    Establishment of a Rodent Glioblastoma Partial Resection Model for Chemotherapy by Local Drug Carriers—Sharing Experience

    No full text
    Local drug delivery systems (LDDS) represent a promising therapy strategy concerning the most common and malignant primary brain tumor glioblastoma (GBM). Nevertheless, to date, only a few systems have been clinically applied, and their success is very limited. Still, numerous new LDDS approaches are currently being developed. Here, (partial resection) GBM animal models play a key role, as such models are needed to evaluate the therapy prior to any human application. However, such models are complex to establish, and only a few reports detail the process. Here, we report our results of establishing a partial resection glioma model in rats suitable for evaluating LDDS. C6-bearing Wistar rats and U87MG-spheroids- and patient-derived glioma stem-like cells-bearing athymic rats underwent tumor resection followed by the implantation of an exemplary LDDS. Inoculation, tumor growth, residual tumor tissue, and GBM recurrence were reliably imaged using high-resolution Magnetic Resonance Imaging. The release from an exemplary LDDS was verified in vitro and in vivo using Fluorescence Molecular Tomography. The presented GBM partial resection model appears to be well suited to determine the efficiency of LDDS. By sharing our expertise, we intend to provide a powerful tool for the future testing of these very promising systems, paving their way into clinical application
    corecore