4 research outputs found

    A micro-capacitive pressure sensor design and modelling

    Get PDF
    Abstract. Measuring air pressure using a capacitive pressure sensor is a robust and precise technique. In addition, a system that employs such transducers lies within the low power consumption applications such as wireless sensor nodes. In this article a high sensitivity with an elliptical diaphragm capacitive pressure sensor is proposed. This design was compared with a circular diaphragm in terms of thermal stresses and pressure and temperature sensitivity. The proposed sensor is targeted for tyre pressure monitoring system application. Altering the overlapping area between the capacitor plates by decreasing the effective capacitance area to improve the overall sensitivity of the sensor (ΔC ∕ C), temperature sensitivity, and built-up stresses is also examined in this article. Theoretical analysis and finite element analysis (FEA) were employed to study pressure and temperature effects on the behaviour of the proposed capacitive pressure sensor. A MEMS (micro electro-mechanical systems) manufacturing processing plan for the proposed capacitive sensor is presented. An extra-low power short-range wireless read-out circuit suited for energy harvesting purposes is presented in this article. The developed read-out circuitry was tested in terms of sensitivity and transmission range.</jats:p

    Fatigue Characteristics and Numerical Modelling Prosthetic for Chopart Amputation

    No full text
    This research is looking for three laminated composite material groups. These three groups were utilized in experimental investigation to find their mechanical properties. These properties have been used to design and manufacture a socket for a partial foot prosthesis using an ANSYS model. This socket was manufactured with a vacuum pressure device to improve its properties. The socket composite material was tested for tensile and fatigue properties; then, its results were used in the ANSYS model. The composite material matrix was laminated in an 80 : 20 ratio, and there were three types of reinforcement lamination material (Perlon, glass fiber, and carbon fiber). The mechanical property results of these tests were found as follows: using only-Perlon reinforcement, the properties are σy=33.6 MPa, σult=35.6 MPa, and modulus of elasticity=1.03 GPa; using (3Perlon +2carbon fiber +3perlon) layers, the properties were σy=65.5 MPa, σult=92.5 MPa, and modulus of elasticity=1.99 GPa; and using (3Perlon + 2 glass fiber + 3perlon) layers, the results were σy=40 MPa, σult=46.6 MPa, and modulus of elasticity=1.4 GPa. The ANSYS model used the boundary condition from the measured contact pressure between the socket and the patient’s stump. The MatScan (F-socket) pressure sensor utilized these interface pressure measurements. The maximum values for the pressure were found as follows: 190 kPa and 164 kPa, which are recorded in the posterior and lateral locations, respectively. The calculated factor of safety for the prosthesis that has been made from a selected composite material with the following layers (3 Perlon+2 carbon fiber+3 Perlon) is 1.037 which is safe for design prosthetic applications. From this study, more prosthetic designs can be modelled and manufactured using this approach. Prosthetics and orthotics are usually custom-made for each patient according to its specific requirements. So, it will be very helpful to find a procedure to analyze the prosthetics before manufacturing it

    A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: synthesis, docking study, and anticancer activity

    No full text
    Thirteen new derivatives of picolinic acid (4–7) were designed and synthesized from the starting parent molecule, picolinic acid. The new compounds were characterized by ATR-FTIR, 1HNMR, and CHNS analysis. A molecular docking study was performed to evaluate the binding affinity of the synthesized compounds toward EGFR kinase domain that indicated occupation of the critical site of EGFR kinase pocket and excellent positioning of the compounds in the pocket. The cytotoxic activity of the compounds against two human cancer cell lines (A549 and MCF-7), the non-tumorigenic MCF10A cell line, and white blood cells (WBC) was evaluated using the MTT assay. Compound 5 showed anticancer activity against A549 lung cancer cells (IC50 = 99.93 µM) but not against MCF-7 breast cancer cells or normal cells. Compound 5 mediated cytotoxicity in A549 lung cancer cells by inducing apoptotic cell death, as suggested by fragmented nuclei after DAPI staining, and agarose gel electrophoresis. Moreover, compound 5 triggered the activation of caspases 3, 4 and 9. However, compound 5 treatment did not affect the release of cytochrome c from the mitochondria to the cytosol, as compared to the vehicle-treated control cells. Nevertheless, compound 5-treated cells reported greater release of smac/DIABLO to the cytosol. In the same context, both compound 5 and thapsigargin (specific inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)) enhanced eIF2 phosphorylation, reflecting the activation of the atypical ER stress pathway and the potential applicability of compound 5 in lung cancer treatment
    corecore