14 research outputs found

    NMR spectroscopy to study dynamic protein structures

    No full text
    This doctoral thesis deals with the structural and dynamical NMR characterization of biomolecules, covering a broad range of proteins, from small peptides to large GPCRs proteins. This work consists of two projects, which are presented in chapter II and III. Chapter II is focused on the structural screening of peptides and small proteins ranging from 14 to 71 amino acids, while chapter III describes the structure and light dynamics of the disease relevant rhodopsin G90D mutant. The main method used to investigate both types of proteins is NMR spectroscopy. Both chapters comprise individual general introduction, materials and methods, results and discussion sections, and a final conclusion paragraph. ‘Chapter I: Methodological aspects of protein NMR spectroscopy’ presents an overview of different NMR methods developed for the rapid characterization of protein structure and dynamics. Multidimensional NMR, which is routinely used in structural biology, is indispensable for protein structure determination in solution. However, detailed information with resolution at the atomic level is time consuming and requires weeks of expensive measurement time, followed by the manual data analysis. Therefore, the development of time-saving NMR techniques is highly required for screening studies of a large amount of proteins, and can be also helpful for studying unstable biomolecules, as their short lifetime often restricts the experimental procedure. This chapter covers the two main approaches to accelerate a multidimensional NMR experiment: fast-pulsing techniques that aim to reduce the duration of an individual measurement, and non-uniform sampling technique (NUS), which was developed to reduce the overall number of increments in virtual time domains. A combination of both approaches, fast-pulsing and non-uniform sampling, allows speeding up the measurement time by 2-3 orders of magnitude. Furthermore, recently developed software called TA (targeted acquisition) combines various time-saving approaches, including fast-pulsing, non-uniform sampling and targeted acquisition. Targeted acquisition algorithm records a set of multidimensional NMR spectra in semi-interleaved incremental mode. This provides the ability to monitor the quality of the recorded spectra in real-time and therefore enables the completion of the experiments after the desired quality is achieved. Using this approach will greatly reduce the measurement time without losing important structural information. The implemented automated FLYA assignment further contributes to the rapid and simplified readout of the chemical shift assignment progress of the TA program. During this doctoral dissertation, the scientific collaboration with the TA software developer Prof. Vladislav Orekhov (Sweden) took place, and resulted in the successful establishing of this new NMR technology in the Schwalbe laboratory. TA is now routinely applied in Prof. Schwalbe group for the structure elucidation of small proteins. ‘Chapter II: Rapid NMR and biophysical characterization of small proteins’ describes the structural analysis of peptides and small proteins, which were recently identified within the framework of the Priority Program (SPP 2002). Due to technical limitations in detections of small systems and strict assumptions concerning the smallest size of the gene that can be translated, small open reading frames (sORFs) were excluded from the automated gene annotation for a very long time. Thanks to the newly developed computational and experimental approaches, the ability to identify and detect the small proteins consisting of less than approximately 70 amino acids sparked a growing scientific interest by microbiologist. In the past years, hundreds of new short protein sequences were discovered. Although some peptides were found to be involved in diverse essential biological processes, the functional elucidation of a large number of recently discovered peptides and small proteins remains a challenging task. It is well established that the structure of proteins is often linked to their function. However, the size of small constructs often restricts the possible diversity of secondary structure elements that might be adopted by a protein. Furthermore, as was shown for intrinsic discorded proteins (IDPs), the absence of a well-defined three-dimensional structure does not necessarily mean lack of function. Moreover, peptides, which are initially unstructured in the isolated form can fold in a stable structured conformation upon interaction with their biological partners. Solution state NMR spectroscopy is perfectly amenable for the structural characterization of systems of this size. It provides a rapid readout about the conformational state of small peptides unambiguously, distinguishing between folded, molten globule and unstructured conformations. During this doctoral thesis the workflow protocol for fast screening of peptides and small proteins was established and applied to 20 candidates ranging from 14 to 71 amino acids, which were identified and selected by six microbiological groups, all members of the Priority Program on small proteins (SPP2002) funded by the German research foundation (DFG). The screening protocol includes sample preparation and biochemical characterization. Peptides containing less than 30 amino acids were synthesized by solid phase synthesis (SPPS), while small proteins containing more than 30 amino acids were heterologously expressed in E. coli. ..

    The Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes tral and ngrl Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234

    Get PDF
    Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacteria. Here, we provide evidence that in the broad host range strain Sinorhizobium fredii NGR234 the complete lack of quorum sensing molecules results in an elevated copy number of its symbiotic plasmid (pNGR234a). This in turn triggers the expression of symbiotic genes and the production of Nod factors in the absence of plant signals. Therefore, increasing the copy number of specific plasmids could be a widespread mechanism of specialized bacterial populations to bridge gaps in signaling cascades

    Biological functions, genetic and biochemical characterization, and NMR structure determination of the small zinc finger protein HVO_2753 from Haloferax volcanii

    No full text
    The genome of the halophilic archaeon Haloferax volcanii encodes more than 40 one-domain zinc finger ”-proteins. Only one of these, HVO_2753, contains four C(P)XCG motifs, suggesting the presence of two zinc binding pockets (ZBPs). Homologs of HVO_2753 are widespread in many euryarchaeota. An in frame deletion mutant of HVO_2753 grew indistinguishably from the wild-type in several media, but had a severe defect in swarming and in biofilm formation. For further analyses, the protein was produced homologously as well as heterologously in Escherichia coli. HVO_2753 was stable and folded in low salt, in contrast to many other haloarchaeal proteins. Only haloarchaeal HVO_2753 homologs carry a very hydrophilic N terminus, and NMR analysis showed that this region is very flexible and not part of the core structure. Surprisingly, both NMR analysis and a fluorimetric assay revealed that HVO_2753 binds only one zinc ion, despite the presence of two ZBPs. Notably, the analysis of cysteine to alanine mutant proteins by NMR as well by in vivo complementation revealed that all four C(P)XCG motifs are essential for folding and function. The NMR solution structure of the major conformation of HVO_2753 was solved. Unexpectedly, it was revealed that ZBP1 was comprised of C(P)XCG motifs 1 and 3, and ZBP2 was comprised of C(P)XCG motifs 2 and 4. There are several indications that ZBP2 is occupied by zinc, in contrast to ZBP1. To our knowledge, this study represents the first in-depth analysis of a zinc finger ”-protein in all three domains of life

    Light dynamics of the retinal-disease-relevant G90D bovine rhodopsin mutant

    No full text
    The RHO gene encodes the G-protein-coupled receptor (GPCR) rhodopsin. Numerous mutations associated with impaired visual cycle have been reported; the G90D mutation leads to a constitutively active mutant form of rhodopsin that causes CSNB disease. We report on the structural investigation of the retinal configuration and conformation in the binding pocket in the dark and light-activated state by solution and MAS-NMR spectroscopy. We found two long-lived dark states for the G90D mutant with the 11-cis retinal bound as Schiff base in both populations. The second minor population in the dark state is attributed to a slight shift in conformation of the covalently bound 11-cis retinal caused by the mutation-induced distortion on the salt bridge formation in the binding pocket. Time-resolved UV/Vis spectroscopy was used to monitor the functional dynamics of the G90D mutant rhodopsin for all relevant time scales of the photocycle. The G90D mutant retains its conformational heterogeneity during the photocycle

    Conserved small mRNA with an unique, extended Shine-Dalgarno sequence

    No full text
    Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3â€Č-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level
    corecore