779 research outputs found

    An Algorithmic Framework for Efficient Large-Scale Circuit Simulation Using Exponential Integrators

    Full text link
    We propose an efficient algorithmic framework for time domain circuit simulation using exponential integrator. This work addresses several critical issues exposed by previous matrix exponential based circuit simulation research, and makes it capable of simulating stiff nonlinear circuit system at a large scale. In this framework, the system's nonlinearity is treated with exponential Rosenbrock-Euler formulation. The matrix exponential and vector product is computed using invert Krylov subspace method. Our proposed method has several distinguished advantages over conventional formulations (e.g., the well-known backward Euler with Newton-Raphson method). The matrix factorization is performed only for the conductance/resistance matrix G, without being performed for the combinations of the capacitance/inductance matrix C and matrix G, which are used in traditional implicit formulations. Furthermore, due to the explicit nature of our formulation, we do not need to repeat LU decompositions when adjusting the length of time steps for error controls. Our algorithm is better suited to solving tightly coupled post-layout circuits in the pursuit for full-chip simulation. Our experimental results validate the advantages of our framework.Comment: 6 pages; ACM/IEEE DAC 201

    Multi-Label Zero-Shot Learning with Structured Knowledge Graphs

    Full text link
    In this paper, we propose a novel deep learning architecture for multi-label zero-shot learning (ML-ZSL), which is able to predict multiple unseen class labels for each input instance. Inspired by the way humans utilize semantic knowledge between objects of interests, we propose a framework that incorporates knowledge graphs for describing the relationships between multiple labels. Our model learns an information propagation mechanism from the semantic label space, which can be applied to model the interdependencies between seen and unseen class labels. With such investigation of structured knowledge graphs for visual reasoning, we show that our model can be applied for solving multi-label classification and ML-ZSL tasks. Compared to state-of-the-art approaches, comparable or improved performances can be achieved by our method.Comment: CVPR 201

    On Robustness and Generalization of ML-Based Congestion Predictors to Valid and Imperceptible Perturbations

    Full text link
    There is substantial interest in the use of machine learning (ML)-based techniques throughout the electronic computer-aided design (CAD) flow, particularly methods based on deep learning. However, while deep learning methods have achieved state-of-the-art performance in several applications, recent work has demonstrated that neural networks are generally vulnerable to small, carefully chosen perturbations of their input (e.g. a single pixel change in an image). In this work, we investigate robustness in the context of ML-based EDA tools -- particularly for congestion prediction. As far as we are aware, we are the first to explore this concept in the context of ML-based EDA. We first describe a novel notion of imperceptibility designed specifically for VLSI layout problems defined on netlists and cell placements. Our definition of imperceptibility is characterized by a guarantee that a perturbation to a layout will not alter its global routing. We then demonstrate that state-of-the-art CNN and GNN-based congestion models exhibit brittleness to imperceptible perturbations. Namely, we show that when a small number of cells (e.g. 1%-5% of cells) have their positions shifted such that a measure of global congestion is guaranteed to remain unaffected (e.g. 1% of the design adversarially shifted by 0.001% of the layout space results in a predicted decrease in congestion of up to 90%, while no change in congestion is implied by the perturbation). In other words, the quality of a predictor can be made arbitrarily poor (i.e. can be made to predict that a design is "congestion-free") for an arbitrary input layout. Next, we describe a simple technique to train predictors that improves robustness to these perturbations. Our work indicates that CAD engineers should be cautious when integrating neural network-based mechanisms in EDA flows to ensure robust and high-quality results.Comment: 7 pages, 7 figure

    Assessment of Reinforcement Learning for Macro Placement

    Full text link
    We provide open, transparent implementation and assessment of Google Brain's deep reinforcement learning approach to macro placement and its Circuit Training (CT) implementation in GitHub. We implement in open source key "blackbox" elements of CT, and clarify discrepancies between CT and Nature paper. New testcases on open enablements are developed and released. We assess CT alongside multiple alternative macro placers, with all evaluation flows and related scripts public in GitHub. Our experiments also encompass academic mixed-size placement benchmarks, as well as ablation and stability studies. We comment on the impact of Nature and CT, as well as directions for future research.Comment: There are eight pages and one page for reference. It includes five figures and seven tables. This paper has been invited to ISPD 202

    The Effect of Affordance on Ubiquitous Commerce Consumption

    Get PDF
    The rapid development of ubiquitous technologies and mobile devices has made ubiquitous commerce (U-commerce) the next business wave. U-commerce enabled merchants with new opportunities to provide personalized services and novel shopping experiences to customers. Applying affordance theory, this study builds a research model that explains the consumer cognitive assimilation process in U-commerce and explores hedonic and impulsive consumption. This study played the U-commerce video for participants before they answered the questionnaires. The empirical results show that context-aware facilitation and social facilitation contribute equally in explaining cognitive assimilation. Meanwhile, cognitive assimilation significantly influences both hedonic consumption and impulsive consumption. This study sheds light on the two important facilitations derived from the U-commerce environment and also reveals the determinants for two types of interesting purchase behaviors in the U-commerce context

    A realistic early-stage power grid verification algorithm based on hierarchical constraints

    Get PDF
    Power grid verification has become an indispensable step to guarantee a functional and robust chip design. Vectorless power grid verification methods, by solving linear programming (LP) problems under current constraints, enable worst-case voltage drop predictions at an early stage of design when the specific waveforms of current drains are unknown. In this paper, a novel power grid verification algorithm based on hierarchical constraints is proposed. By introducing novel power constraints, the proposed algorithm generates more realistic current patterns and provides less pessimistic voltage drop predictions. The model order reduction-based coefficient computation algorithm reduces the complexity of formulating the LP problems from being proportional to steps to being independent of steps. Utilizing the special hierarchical constraint structure, the submodular polyhedron greedy algorithm dramatically reduces the complexity of solving the LP problems from over O(k 3 m) to roughly O(k k m), where k m is the number of variables. Numerical results have shown that the proposed algorithm provides less pessimistic voltage drop prediction while at the same time achieves dramatic speedup. © 2011 IEEE.published_or_final_versio
    • …
    corecore