2,590 research outputs found

    Energy levels of a parabolically confined quantum dot in the presence of spin-orbit interaction

    Full text link
    We present a theoretical study of the energy levels in a parabolically confined quantum dot in the presence of the Rashba spin-orbit interaction (SOI). The features of some low-lying states in various strengths of the SOI are examined at finite magnetic fields. The presence of a magnetic field enhances the possibility of the spin polarization and the SOI leads to different energy dependence on magnetic fields applied. Furthermore, in high magnetic fields, the spectra of low-lying states show basic features of Fock-Darwin levels as well as Landau levels.Comment: 6 pages, 4 figures, accepted by J. Appl. Phy

    Instrumentation of a high-sensitivity microwave vector detection system for low-temperature applications

    Full text link
    We present the design and the circuit details of a high-sensitivity microwave vector detection system, which is aiming for studying the low-dimensional electron system embedded in the slots of a coplanar waveguide at low temperatures. The coplanar waveguide sample is placed inside a phase-locked loop; the phase change of the sample may cause a corresponding change in the operation frequency, which can be measured precisely. We also employ a double-pulse modulation on the microwave signals, which comprises a fast pulse modulation for gated averaging and a slow pulse modulation for lock-in detection. In measurements on real samples at low temperatures, this system provides much better resolutions in both amplitude and phase than most of the conventional vector analyzers at power levels below -65 dBm.Comment: 7 pages, 11 figures, 1 table, lette

    A Case of Reactive Cervical Lymphadenopathy with Fat Necrosis Impinging on Adjacent Vascular Structures.

    Get PDF
    A tender neck mass in adults can be a diagnostic challenge due to a wide differential diagnosis, which ranges from reactive lymphadenopathy to malignancy. In this report, we describe a case of a young female with an unusually large and tender reactive lymph node with fat necrosis. The diagnostic imaging findings alone mimicked that of scrofula and malignancy, which prompted a complete workup. Additionally, the enlarged lymph node was compressing the internal jugular vein in the setting of oral contraceptive use by the patient, raising concern for Lemierre's syndrome or internal jugular vein thrombosis. This report shows how, in the appropriate clinical context, and especially with the involvement of adjacent respiratory or neurovascular structures, aggressive diagnostic testing can be indicated

    Nonequilibrium Reweighting on the Driven Diffusive Lattice Gas

    Full text link
    The nonequilibrium reweighting technique, which was recently developed by the present authors, is used for the study of the nonequilibrium steady states. The renewed formulation of the nonequlibrium reweighting enables us to use the very efficient multi-spin coding. We apply the nonequilibrium reweighting to the driven diffusive lattice gas model. Combining with the dynamical finite-size scaling theory, we estimate the critical temperature Tc and the dynamical exponent z. We also argue that this technique has an interesting feature that enables explicit calculation of derivatives of thermodynamic quantities without resorting to numerical differences.Comment: Accepted for publication in J. Phys. A (Lett.

    AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    Get PDF
    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity
    corecore