1,536 research outputs found
Analytical Solution to Transport in Brownian Ratchets via Gambler's Ruin Model
We present an analogy between the classic Gambler's Ruin problem and the
thermally-activated dynamics in periodic Brownian ratchets. By considering each
periodic unit of the ratchet as a site chain, we calculated the transition
probabilities and mean first passage time for transitions between energy minima
of adjacent units. We consider the specific case of Brownian ratchets driven by
Markov dichotomous noise. The explicit solution for the current is derived for
any arbitrary temperature, and is verified numerically by Langevin simulations.
The conditions for vanishing current and current reversal in the ratchet are
obtained and discussed.Comment: 4 pages, 3 figure
Pseudo spin-orbit coupling of Dirac particles in graphene spintronics
We study the pseudo spin-orbital (SO) effects experienced by massive Dirac
particles in graphene, which can potentially be of a larger magnitude compared
to the conventional Rashba SO effects experienced by particles in a 2DEG
semiconductor heterostructure. In order to generate a uniform vertical pseudo
SO field, we propose an artificial atomic structure, consisting of a graphene
ring and a charged nanodot at the center which produces a large radial electric
field. In this structure, a large pseudo SO coupling strength can be achieved
by accelerating the Dirac particles around the ring, due to the small energy
gap in graphene and the large radial electric field emanating from the charged
nanodot. We discuss the theoretical possibility of harnessing the pseudo SO
effects in mesoscopic applications, e.g. pseudo spin relaxation and switching.Comment: 12 pages, 1 figur
Nonequilibrium Reweighting on the Driven Diffusive Lattice Gas
The nonequilibrium reweighting technique, which was recently developed by the
present authors, is used for the study of the nonequilibrium steady states. The
renewed formulation of the nonequlibrium reweighting enables us to use the very
efficient multi-spin coding. We apply the nonequilibrium reweighting to the
driven diffusive lattice gas model. Combining with the dynamical finite-size
scaling theory, we estimate the critical temperature Tc and the dynamical
exponent z. We also argue that this technique has an interesting feature that
enables explicit calculation of derivatives of thermodynamic quantities without
resorting to numerical differences.Comment: Accepted for publication in J. Phys. A (Lett.
AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.
Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity
Mapping Monte Carlo to Langevin dynamics: A Fokker-Planck approach
We propose a general method of using the Fokker-Planck equation (FPE) to link
the Monte-Carlo (MC) and the Langevin micromagnetic schemes. We derive the
drift and disusion FPE terms corresponding to the MC method and show that it is
analytically equivalent to the stochastic Landau-Lifshitz-Gilbert (LLG)
equation of Langevin-based micromagnetics. Subsequent results such as the time
quantification factor for the Metropolis MC method can be rigorously derived
from this mapping equivalence. The validity of the mapping is shown by the
close numerical convergence between the MC method and the LLG equation for the
case of a single magnetic particle as well as interacting arrays of particles.
We also found that our Metropolis MC is accurate for a large range of damping
factors , unlike previous time-quantified MC methods which break down
at low , where precessional motion dominates.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. Let
Large scale structure around a z=2.1 cluster
The most prodigious starburst galaxies are absent in massive galaxy clusters
today, but their connection with large scale environments is less clear at
. We present a search of large scale structure around a galaxy
cluster core at using a set of spectroscopically confirmed galaxies.
We find that both color-selected star-forming galaxies (SFGs) and dusty
star-forming galaxies (DSFGs) show significant overdensities around the
cluster. A total of 8 DSFGs (including 3 X-ray luminous active
galactic nuclei, AGNs) and 34 SFGs are found within a 10 arcmin radius
(corresponds to 15 cMpc at ) from the cluster center and within
a redshift range of , which leads to galaxy overdensities of
and . The cluster core and
the extended DSFG- and SFG-rich structure together demonstrate an active
cluster formation phase, in which the cluster is accreting a significant amount
of material from large scale structure while the more mature core may begin to
virialize. Our finding of this DSFG-rich structure, along with a number of
other protoclusters with excess DSFGs and AGNs found to date, suggest that the
overdensities of these rare sources indeed trace significant mass
overdensities. However, it remains puzzling how these intense star formers are
triggered concurrently. Although an increased probability of galaxy
interactions and/or enhanced gas supply can trigger the excess of DSFGs, our
stacking analysis based on 850 m images and morphological analysis based
on rest-frame optical imaging do not show such enhancements of merger fraction
and gas content in this structure.Comment: 11 pages, 4 figures, ApJ accepte
Association of low arousal threshold obstructive sleep apnea manifestations with body fat and water distribution
Obstructive sleep apnea (OSA) with a low arousal threshold (low-ArTH) phenotype can cause minor respiratory events that exacerbate sleep fragmentation. Although anthropometric features may affect the risk of low-ArTH OSA, the associations and underlying mechanisms require further investigation. This study investigated the relationships of body fat and water distribution with polysomnography parameters by using data from a sleep center database. The derived data were classified as those for low-ArTH in accordance with criteria that considered oximetry and the frequency and type fraction of respiratory events and analyzed using mean comparison and regression approaches. The low-ArTH group members (n = 1850) were significantly older and had a higher visceral fat level, body fat percentage, trunk-to-limb fat ratio, and extracellular-to-intracellular (E-I) water ratio compared with the non-OSA group members (n = 368). Significant associations of body fat percentage (odds ratio [OR]: 1.58, 95% confident interval [CI]: 1.08 to 2.3, p < 0.05), trunk-to-limb fat ratio (OR: 1.22, 95% CI: 1.04 to 1.43, p < 0.05), and E-I water ratio (OR: 1.32, 95% CI: 1.08 to 1.62, p < 0.01) with the risk of low-ArTH OSA were noted after adjustments for sex, age, and body mass index. These observations suggest that increased truncal adiposity and extracellular water are associated with a higher risk of low-ArTH OSA
Submillimeter emission from the hot molecular jet HH 211
We observed the HH 211 jet in the submillimeter continuum and the CO(3-2) and
SiO(8-7) transitions with the Submillimeter Array. The continuum source
detected at the center of the outflow shows an elongated morphology,
perpendicular to the direction of the outflow axis. The high-velocity emission
of both molecules shows a knotty and highly collimated structure. The SiO(8-7)
emission at the base of the outflow, close to the driving source, spans a wide
range of velocities, from -20 up to 40 km s^{-1}. This suggests that a
wide-angle wind may be the driving mechanism of the HH 211 outflow. For
distances greater than 5" (1500 AU) from the driving source, emission from both
transitions follows a Hubble-law behavior, with SiO(8-7) reaching higher
velocities than CO(3-2), and being located upstream of the CO(3-2) knots. This
indicates that the SiO(8-7) emission is likely tracing entrained gas very close
to the primary jet, while the CO(3-2) is tracing less dense entrained gas. From
the SiO(5-4) data of Hirano et al. we find that the SiO(8-7)/SiO(5-4)
brightness temperature ratio along the jet decreases for knots far from the
driving source. This is consistent with the density decreasing along the jet,
from (3-10)x10^6 cm^{-3} at 500 AU to (0.8-4)x10^6 cm^{-3} at 5000 AU from the
driving source.Comment: 3 pages, 3 figures. Accepted by Astrophysical Journal Letter
Associations between air pollution, intracellular-to-extracellular water distribution, and obstructive sleep apnea manifestations
Background: Exposure to air pollution may be a risk factor for obstructive sleep apnea (OSA) because air pollution may alter body water distribution and aggravate OSA manifestations. Objectives: This study aimed to investigate the mediating effects of air pollution on the exacerbation of OSA severity through body water distribution. Methods: This retrospective study analyzed body composition and polysomnographic data collected from a sleep center in Northern Taiwan. Air pollution exposure was estimated using an adjusted nearest method, registered residential addresses, and data from the databases of government air quality motioning stations. Next, regression models were employed to determine the associations between estimated air pollution exposure levels (exposure for 1, 3, 6, and 12 months), OSA manifestations (sleep-disordered breathing indices and respiratory event duration), and body fluid parameters (total body water and body water distribution). The association between air pollution and OSA risk was determined. Results: Significant associations between OSA manifestations and short-term (1 month) exposure to PM2.5 and PM10 were identified. Similarly, significant associations were identified among total body water and body water distribution (intracellular-to-extracellular body water distribution), short-term (1 month) exposure to PM2.5 and PM10, and medium-term (3 months) exposure to PM10. Body water distribution might be a mediator that aggravates OSA manifestations, and short-term exposure to PM2.5 and PM10 may be a risk factor for OSA. Conclusion: Because exposure to PM2.5 and PM10 may be a risk factor for OSA that exacerbates OSA manifestations and exposure to particulate pollutants may affect OSA manifestations or alter body water distribution to affect OSA manifestations, mitigating exposure to particulate pollutants may improve OSA manifestations and reduce the risk of OSA. Furthermore, this study elucidated the potential mechanisms underlying the relationship between air pollution, body fluid parameters, and OSA severity
- …