23 research outputs found
Neue Mikroschadstoffe in der aquatischen Umwelt
Farmaceutici se, uz druga mikrooneÄiÅ”Äivala kao Å”to su pesticidi i mikroplastika, ubrajaju u nova oneÄiÅ”Äivala koja izazivaju zabrinutost. Prisutnost farmaceutika u okoliÅ”u je posljedica njihove proizvodnje, uporabe u lijeÄenju i proizvodnji hrane te nepropisnog odlaganja. DospijeÄe farmaceutika u vodeni okoliÅ” može rezultirati njihovim unosom u hranidbeni lanac. PosljediÄno, izloženost ljudi farmaceuticima iz okoliÅ”a povezuje se s konzumacijom hrane biljnog i životinjskog porijekla te pitke vode. DosadaÅ”njim studijama detektirani su brojni farmaceutici u okoliÅ”u te utvrÄene njihove koncentracije, no vrlo malo se zna o njihovom ponaÅ”anju i sudbini u okoliÅ”u, kao i negativnom utjecaju na zdravlje ljudi. Istraživanje prisutnosti farmaceutika u okoliÅ”u je vrlo važno s ekoloÅ”kog aspekta kako bi se u buduÄnosti regulirale maksimalne dopuÅ”tene koncentracije farmaceutika u vodi. Koncentracija i utjecaj farmaceutika u okoliÅ”u najviÅ”e ovise o fizikalno-kemijskim svojstvima te okoliÅ”nim parametrima, izvorima oneÄiÅ”Äenja te primijenjenim tehnologijama obrade otpadnih voda. Ispusti iz ureÄaja za proÄiÅ”Äavanje otpadnih voda prepoznati su kao jedan od glavnih izvora dospijeÄa farmaceutika u okoliÅ” buduÄi da su konvencionalne metode obrade nedovoljno uÄinkovite u njihovu uklanjanju iz vode. Stoga hibridne tehnologije koje ukljuÄuju napredne metode obrade kao Å”to su napredni oksidacijski procesi (AOP-i) pokazuju velik potencijal u nalaženju rjeÅ”enja za problem unosa farmaceutika i ostalih mikrooneÄiÅ”Äivala u vodeni okoliÅ”.Pharmaceuticals, in addition to other micropollutants such as pesticides and microplastics, are among the new contaminants of emerging concern. The presence of pharmaceuticals in the environment is a consequence of their production, their use in treatment and in food production, and their improper disposal. The release of pharmaceuticals into the aquatic environment may result in their uptake into the food chain. Consequently, human exposure to pharmaceuticals from the environment has been linked to the consumption of plant and animal origin food and to drinking water. Studies have so far detected numerous pharmaceuticals in the environment and determined their concentrations; however, very little is known about how they behave and where they end up in the environment, or about their negative impact on human health. Research into the presence of pharmaceuticals in the environment is very important from environmental aspects, so that maximum permissible concentrations of pharmaceuticals in water could be regulated in the future. The concentration and impact of pharmaceuticals in the environment mostly depend on their physico-chemical properties and environmental parameters, the sources of pollution and implemented wastewater treatment technologies. Discharges from wastewater treatment plants have been identified as one of the main sources of the pharmaceuticalsā release into the environment, since the conventional treatment methods are insufficiently effective in their removal from wastewater. For this reason, hybrid technologies that include advanced treatment methods, such as advanced oxidation processes (AOPs), show great potential in view of finding solutions to the problem of the release of pharmaceuticals and other micropollutants into the aquatic environment.Neben anderen Mikroschadstoffen wie Pestiziden und Mikroplastik zƤhlen die Arzneimittel zu neuen Schadstoffen, die Sorge bereiten. Die Arzneimittel gelangen in die Umwelt aus der Produktion, nach ihrer Anwendung in der medizinischen Behandlung, aus der Nahrungserzeugung und wegen der unangemessenen Entsorgung. Wenn die Arzneimittel in die aquatische Umwelt gelangen, kƶnnen sie auch in die Nahrungskette gelangen. Folglich wird die Aussetzung von Menschen den ArzneimittelrĆ¼ckstƤnden in der Umwelt mit der Aufnahme von pflanzlichen und tierischen Lebensmittel sowie Trinkwasser verbunden. In bisherigen Studien wurden in der Umwelt zahlreiche Arzneimittel gefunden und ihre Konzentrationen ermittelt, allerdings weiĆ am noch immer nur sehr wenig Ć¼ber das Verhalten und die Auswirkungen von Arzneimitteln in der Umwelt sowie Ć¼ber ihre negative Wirkung auf die menschliche Gesundheit. Die Untersuchung des Vorkommens von Arzneimitteln im der Umwelt ist aus ƶkologischer Sicht sehr wichtig, damit in der Zukunft die maximal erlaubten Arzneimittelkonzentrationen in Wasser reguliert werden kƶnnen. Die Konzentration und die Auswirkung von Arzneimitteln in der Umwelt hƤngen vor allem von physikalischen und chemischen Eigenschaften sowie von Umweltparametern, Verschmutzungsquellen und von angewandten Technologien zur Abwasserbehandlung ab. Der Auslauf von KlƤranalgen ist einer der Hauptwege, Ć¼ber die die Arzneimittel in die Umwelt gelangen, weil die konventionellen Behandlungsmethoden in ihrer Entfernung aus Wasser unzureichend wirksam sind. Deswegen zeigen die Hybridtechnologien, einschlieĆlich der fortschrittlichen Behandlungsmethoden wie fortschrittliche Oxidationsprozesse (engl. advanced oxidation processes, AOPs), groĆes Potential hinsichtlich der Lƶsung dieses Problems des Eintrags von ArzneimittelrĆ¼ckstƤnden und anderen Mikroschadstoffen in die aquatische Umwelt
Neue Mikroschadstoffe in der aquatischen Umwelt
Farmaceutici se, uz druga mikrooneÄiÅ”Äivala kao Å”to su pesticidi i mikroplastika, ubrajaju u nova oneÄiÅ”Äivala koja izazivaju zabrinutost. Prisutnost farmaceutika u okoliÅ”u je posljedica njihove proizvodnje, uporabe u lijeÄenju i proizvodnji hrane te nepropisnog odlaganja. DospijeÄe farmaceutika u vodeni okoliÅ” može rezultirati njihovim unosom u hranidbeni lanac. PosljediÄno, izloženost ljudi farmaceuticima iz okoliÅ”a povezuje se s konzumacijom hrane biljnog i životinjskog porijekla te pitke vode. DosadaÅ”njim studijama detektirani su brojni farmaceutici u okoliÅ”u te utvrÄene njihove koncentracije, no vrlo malo se zna o njihovom ponaÅ”anju i sudbini u okoliÅ”u, kao i negativnom utjecaju na zdravlje ljudi. Istraživanje prisutnosti farmaceutika u okoliÅ”u je vrlo važno s ekoloÅ”kog aspekta kako bi se u buduÄnosti regulirale maksimalne dopuÅ”tene koncentracije farmaceutika u vodi. Koncentracija i utjecaj farmaceutika u okoliÅ”u najviÅ”e ovise o fizikalno-kemijskim svojstvima te okoliÅ”nim parametrima, izvorima oneÄiÅ”Äenja te primijenjenim tehnologijama obrade otpadnih voda. Ispusti iz ureÄaja za proÄiÅ”Äavanje otpadnih voda prepoznati su kao jedan od glavnih izvora dospijeÄa farmaceutika u okoliÅ” buduÄi da su konvencionalne metode obrade nedovoljno uÄinkovite u njihovu uklanjanju iz vode. Stoga hibridne tehnologije koje ukljuÄuju napredne metode obrade kao Å”to su napredni oksidacijski procesi (AOP-i) pokazuju velik potencijal u nalaženju rjeÅ”enja za problem unosa farmaceutika i ostalih mikrooneÄiÅ”Äivala u vodeni okoliÅ”.Pharmaceuticals, in addition to other micropollutants such as pesticides and microplastics, are among the new contaminants of emerging concern. The presence of pharmaceuticals in the environment is a consequence of their production, their use in treatment and in food production, and their improper disposal. The release of pharmaceuticals into the aquatic environment may result in their uptake into the food chain. Consequently, human exposure to pharmaceuticals from the environment has been linked to the consumption of plant and animal origin food and to drinking water. Studies have so far detected numerous pharmaceuticals in the environment and determined their concentrations; however, very little is known about how they behave and where they end up in the environment, or about their negative impact on human health. Research into the presence of pharmaceuticals in the environment is very important from environmental aspects, so that maximum permissible concentrations of pharmaceuticals in water could be regulated in the future. The concentration and impact of pharmaceuticals in the environment mostly depend on their physico-chemical properties and environmental parameters, the sources of pollution and implemented wastewater treatment technologies. Discharges from wastewater treatment plants have been identified as one of the main sources of the pharmaceuticalsā release into the environment, since the conventional treatment methods are insufficiently effective in their removal from wastewater. For this reason, hybrid technologies that include advanced treatment methods, such as advanced oxidation processes (AOPs), show great potential in view of finding solutions to the problem of the release of pharmaceuticals and other micropollutants into the aquatic environment.Neben anderen Mikroschadstoffen wie Pestiziden und Mikroplastik zƤhlen die Arzneimittel zu neuen Schadstoffen, die Sorge bereiten. Die Arzneimittel gelangen in die Umwelt aus der Produktion, nach ihrer Anwendung in der medizinischen Behandlung, aus der Nahrungserzeugung und wegen der unangemessenen Entsorgung. Wenn die Arzneimittel in die aquatische Umwelt gelangen, kƶnnen sie auch in die Nahrungskette gelangen. Folglich wird die Aussetzung von Menschen den ArzneimittelrĆ¼ckstƤnden in der Umwelt mit der Aufnahme von pflanzlichen und tierischen Lebensmittel sowie Trinkwasser verbunden. In bisherigen Studien wurden in der Umwelt zahlreiche Arzneimittel gefunden und ihre Konzentrationen ermittelt, allerdings weiĆ am noch immer nur sehr wenig Ć¼ber das Verhalten und die Auswirkungen von Arzneimitteln in der Umwelt sowie Ć¼ber ihre negative Wirkung auf die menschliche Gesundheit. Die Untersuchung des Vorkommens von Arzneimitteln im der Umwelt ist aus ƶkologischer Sicht sehr wichtig, damit in der Zukunft die maximal erlaubten Arzneimittelkonzentrationen in Wasser reguliert werden kƶnnen. Die Konzentration und die Auswirkung von Arzneimitteln in der Umwelt hƤngen vor allem von physikalischen und chemischen Eigenschaften sowie von Umweltparametern, Verschmutzungsquellen und von angewandten Technologien zur Abwasserbehandlung ab. Der Auslauf von KlƤranalgen ist einer der Hauptwege, Ć¼ber die die Arzneimittel in die Umwelt gelangen, weil die konventionellen Behandlungsmethoden in ihrer Entfernung aus Wasser unzureichend wirksam sind. Deswegen zeigen die Hybridtechnologien, einschlieĆlich der fortschrittlichen Behandlungsmethoden wie fortschrittliche Oxidationsprozesse (engl. advanced oxidation processes, AOPs), groĆes Potential hinsichtlich der Lƶsung dieses Problems des Eintrags von ArzneimittelrĆ¼ckstƤnden und anderen Mikroschadstoffen in die aquatische Umwelt
Od makro do mikroplastike; utjecaj fotooksidativne degradacije
The impact of plastic waste on the environment, human health, and ecosystems is one of the most important issues today. Once released into the environment, plastic waste is exposed to various stress factors that can lead to a reduction in its structural integrity and consequently to its fragmentation into smaller pieces. In this work, the effects of simulated UV aging on the surface properties and fragmentation of high-density polyethylene (HDPE) films were studied. HDPE films were prepared from pristine polymer granules, and aged for 14, 28, and 42 days under artificial UV irradiation. The samples were characterised before and after each irradiation period to inspect structural and surface changes. FTIR spectra revealed the appearance of carbonyl (C=O) and carbon-oxygen (CāO, OāC=O, CāOāOā) groups due to photodegradation of HDPE. The change in surface polarity with UV irradiation time was determined by measuring the water contact angle, while the surface morphology was analysed using a SEM microscope. The results revealed a significant increase in carbonyl index, increased hydrophilicity, and increased brittleness resulting from a high degree of photodegradation after 28 and 42 days of UV irradiation. The different particle size distribution yielded upon grinding indicated that aged HDPE films are more prone to fragmentation into micro-sized particles.Utjecaj plastiÄnog otpada na okoliÅ”, ljudsko zdravlje te ekosustav jedno je od najvažnijih pitanja danaÅ”njice. Nakon Å”to se ispusti u okoliÅ”, otpad je izložen razliÄitim okoliÅ”nim utjecajima koji mogu dovesti do naruÅ”avanja cjelovitosti strukture, a posljediÄno i do fragmentacije na manje dijelove. U ovom su radu istraživani uÄinci simuliranog UV starenja na povrÅ”inska svojstva i fragmentaciju filmova polietilena visoke gustoÄe (HDPE). HDPE filmovi pripremljeni su od polimernih granula te potom stareni 14, 28 i 42 dana pod utjecajem simuliranog UV zraÄenja. Uzorci su karakterizirani prije te nakon svakog razdoblja ozraÄivanja da bi se utvrdile strukturne i povrÅ”inske promjene. Na temelju FTIR spektara ustanovljena je pojava karbonilnih (C=O) i ugljiko-kisikovih (CāO,
OāC=O, CāOāOā) skupina kao rezultat fotodegradacije HDPE-a. Promjena polarnosti povrÅ”ine s vremenom UV ozraÄivanja odreÄena je mjerenjem kontaktnog kuta, dok je morfologija povrÅ”ine analizirana SEM mikroskopom. Rezultati su ukazali na znatno poveÄanje karbonilnog indeksa te hidrofilnosti, kao i poveÄanu lomljivost kao rezultat visokog stupnja fotodegradacije nakon 28 i 42 dana UV zraÄenja. RazliÄita raspodjela veliÄine Äestica dobivena mljevenjem materijala upuÄuje na to da su stareni HDPE filmovi skloniji fragmentaciji u Äestice mikroveliÄina
One-Pot Synthesis of Sulfur-Doped TiO2/Reduced Graphene Oxide Composite (S-TiO2/rGO) with Improved Photocatalytic Activity for the Removal of Diclofenac from Water
Sulfur-doped TiO2 (S-TiO2) composites with reduced graphene oxide (rGO), wt. % of rGO equal to 0.5%, 2.75%, and 5.0%, were prepared by a one-pot solvothermal procedure. The aim was to improve photocatalytic performance in comparison to TiO2 under simulated solar irradiation for the treatment of diclofenac (DCF) in aqueous medium. The obtained composites were characterized for physical- chemical properties using thermogravimetric analysis (TGA), X-ray diffractograms (XRD), Raman, scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), Brauner Emmett Teller (BET), and photoluminescence (PL) analyses, indicating successful sulfur doping and inclusion of rGO. Sulfur doping and rGO have successfully led to a decrease in photogenerated charge recombination. However, both antagonistic and synergistic effects toward DCF treatment were observed, with the latter being brought forward by higher wt.% rGO. The composite with 5.0 wt.% rGO has shown the highest DCF conversion at pH 4 compared to that obtained by pristine TiO2, despite lower DCF adsorption during the initial dark period. The expected positive effects of both sulfur doping and rGO on charge recombination were found to be limited because of the subpar interphase contact with the composite and incomplete reduction of the GO precursor. Consequent unfavorable interactions between rGO and DCF negatively influenced the activity of the studied S-TiO2/rGO photocatalyst under simulated solar irradiation