9 research outputs found
Aquatic Toxicity of Polyethylene and Microcrystalline Cellulose Microbeads Used as Abrasives in Cosmetics
Microplastics have been part of personal care products for years, but due to microplastic pollution, many companies have replaced microplastics with natural particles, such as microcrystalline cellulose. Although natural particles are considered more environmentally friendly, their ecotoxicological profile is unknown. In this context, the aim of this study was to compare the ecotoxicity of polyethylene and microcrystalline cellulose microbeads, both extracted from a cosmetic product. The effects of the two types of particles on the aquatic macrophyte Lemna minor and the crustacean Daphnia magna, as well as the bioadhesion of the particles to Lemna minor were evaluated. The results showed no significant effects of either particle on the specific growth rate, root length, and chlorophyll content of Lemna minor. The bioadhesion of both types of particles to the plant biomass was comparable. Furthermore, no significant effects were observed on the mobility and body length of Daphnia magna. Thus, the investigated polyethylene and cellulose microbeads showed no significant toxic effects on the tested organisms. However, due to the persistence of polyethylene in the environment, the use of polyethylene microbeads in cosmetics and personal care products should be avoided.
This work is licensed under a Creative Commons Attribution 4.0 International License
The Problem of Phthalate Occurrence in Aquatic Environment: A Review
This review has four major objectives: I) to present the problem of phthalate pollution, II) to highlight common techniques for quantification of phthalate compounds in water, III) to summarize current trends in determination of phthalates toxicity and point out the major adverse effects, and IV) to discuss and critically compare modern approaches in purification of phthalate-polluted water samples and thus reveal the further perspectives. Phthalates are organic compounds that are used extensively as additives in plastics and personal care products. They have high leaching potential and, therefore, they have been detected in various environments, including aquatic environments. Concentrations of phthalates in water are generally low, so their determination usually requires preconcentration. However, phthalates are compounds with very high hazardous potential. Related toxicity studies have been focused mainly on long-term exposures, and the results have shown that phthalates mainly affect the endocrine and reproductive systems. Therefore, phthalates have become a global concern. Their removal from the environment not only ensures environmental protection, but the protection of human health as well. Among various presented approaches for phthalates removal, anaerobic biodegradation has shown the highest potential for further developments because it is a promising technology for using wastewater as a source of green energy.
This work is licensed under a Creative Commons Attribution 4.0 International License
Environmentally Friendly Packaging Materials Based on Thermoplastic Starch
Low-density polyethylene (LDPE) is extensively used as packaging material, and as such has a short service life, but long environmental persistence. The alternative to reducing the impact of LDPE as packaging material on the environment is to blend it with carbohydrate-based polymers, like starch. Therefore, the focus of this investigation was to prepare bio-based blends of LDPE and thermoplastic starch (TPS) containing different amounts of TPS using a Brabender kneading chamber. Due to incompatibility of LDPE/TPS blends, a styreneāethylene/butyleneāstyrene block copolymer, grafted with maleic anhydride (SEBS-g-MA) containing 2 mol % anhydride groups, was added as a compatibilizer. The effect of the biodegradable, hydrophilic TPS, its content, and the incorporation
of the compatibilizer on the properties of LDPE/TPS blends were analysed. The characterization was performed by means of thermogravimetric analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and water absorption
(WA). Based on the results of the morphological structure, a good dispersion of the TPS phase in LDPE matrix was obtained with the incorporation of compatibilizer, which resulted in better thermal and barrier properties of these materials
Bioremediation of MP-polluted Waters Using Bacteria Bacillus licheniformis, Lysinibacillus massiliensis, and Mixed Culture of Bacillus sp. and Delftia acidovorans
Microplastic particles (MPs) are widely distributed pollutants in the environment. While a growing number of studies have shown that MPs are toxic to plant and animal life, systemic efforts to reduce their presence have been scarce. Low-density polyethylene (LDPE) and polystyrene (PS) are one of the most common among all plastic-forming MPs. In this study, pure bacterial strains, Bacillus licheniformis and Lysinibacillus massiliensis, and a mixed bacterial culture of Delftia acidovorans and Bacillus sp., were used for biodegradation of LDPE and PS microplastics. Biodegradation of MP-PS and MP-LDPE of particle size 300 ā 500 Ī¼m was carried out under batch operating conditions
at a temperature of 25 Ā± 2 Ā°C, pH values of 7.15, and 160 rpm during 22 days. The obtained results showed that mixed bacterial cultures degraded MP-LDPE and MP-PS better than pure bacterial cultures, and the biodegradation efficiency was higher for MP-LDPE than for MP-PS, as indicated by greater reduction in peak intensity and spectral deformation, higher colony forming unit (CFU), and inorganic carbon (IC) values.
This work is licensed under a Creative Commons Attribution 4.0 International License
Adsorption of Humic Acid from Water Using Chemically Modified Bituminous Coal-based Activated Carbons
Humic acid (HA) impairs water quality due to its reactivity with many substances present in water. During the drinking-water treatment process and water distribution via water supply system, HA present in water may react with chlorine and other disinfects producing harmful disinfection by-products (DBPs), which are categorized by the International Agency for Research on Cancer (IARC) in groups 2A (probably carcinogenic to humans) or 2B (possibly carcinogenic to humans). Several studies have investigated and reported increased HA removal by iron-coated sorbents. Therefore, the aim of this study was to examine the removal of HA from water by two commercially available bituminous coal-based activated carbons (ACs), Cullar D (Cm) and Hydraffin 30N (Hm). Prior to testing the chosen adsorbents were chemically modified according to two protocols: (1) oxidation by acid mixture (m1), and (2) oxidation with acid mixture followed by
iron-ions impregnation (m2). The batch adsorption tests were used to test their efficiency in HA removal under various values of process parameters (initial HA concentration, pH, contact time, adsorbent mass, and temperature). The results showed that up to 96 % of HA removal can be obtained by Cullar D modification Cm1, while maximum uptake of HA by Hydraffin 30N modification was achieved with Hm1 (62.1 %). After surface saturation with Fe3+ āions (m2), both activated carbons showed similar and lower performances in HA removal (Cm2 up to 66.5 %, and Hm2 up to 50.3 %). FTIR analysis confirmed differences in modified AC structures, as well as favorable structure of Cm1 for HA adsorption.
This work is licensed under a Creative Commons Attribution 4.0 International License