78 research outputs found

    Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization

    Get PDF
    Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market

    The worldwide patent landscape of dental implant technology

    Get PDF
    In an aging society, quality of life improvement is emerging as an important issue, and as implants are accepted as the core of oral rehabilitation treatment, competition for leadership in developing related technologies is intensifying. In this trend, unlike what is evident in the literature, the patent landscape shows the status of industrial-based technology development. A database analysis of a total of 32,237 dental implant patents shows improvements in technology, diverse geographical characteristics, and new advances toward technological convergence in this field. Technologically, dental implant technology has shown a tendency to develop from conventional implant materials and surface treatment technologies to new material technologies making use of substances such as pure zirconium and tantalum or software technologies related to diagnosis and prognosis. Regionally, dental implant technology, which was developed mainly in Europe and the Unites States in the past, is growing explosively in East Asian countries accompanied by the recent growth of the Asian market. In summary, dental implant technology seems to be developing while trying to converge with various technological areas based on the local market environment. Therefore, it is necessary to develop a new dental implant material technology that is highly applicable to the development of hybrid information/communication technology and is suitable for a new manufacturing method. Our study may provide important information to help basic and translational researchers and their financial supporters set their research directions in advancing the development of dental implants.This work was supported by the Ministry of Science and ICT of Korea and the National Research Foundation of Korea (grant nos. NRF2017R1A4A1014584, NRF-2019R1C1C1003669, NRF-2020R1A4A1019423, NRF-2020R1A2B5B02002658, NRF-2020R1C1C1005830 and NRF-2021R1C1C2095130)

    An Overview of Biomaterials in Periodontology and Implant Dentistry

    Get PDF
    Material is a crucial factor for the restoration of the tooth or periodontal structure in dentistry. Various biomaterials have been developed and clinically applied for improved periodontal tissue regeneration and osseointegration, especially in periodontology and dental implantology. Furthermore, the biomimetic approach has been the subject of active research in recent years. In this review, the most widely studied biomaterials (bone graft material, barrier membrane, and growth or differentiation factors) and biomimetic approaches to obtain optimal tissue regeneration by making the environment almost similar to that of the extracellular matrix are discussed and specifically highlighted

    Hydrogen effects on nanomechanical behavior of additively manufactured 316L stainless steels

    Get PDF
    Additive manufacturing (AM) has received considerable attention in recent years due to its ability to produce complex engineering components with reduced cost and waste, which simply cannot be made with conventional manufacturing processes. It has been reported that AM 316L austenitic stainless steel (SS) has excellent mechanical properties and possibly even breaks the strength-ductility trade-off. For practical industrial application, it is necessary to investigate the AM steel\u27s resistance to hydrogen embrittlement which is unavoidable in most strucral applications. In this work, we explore the hydrogen effects on nanomechanical responses of AM 316L SS (such as hardness, strain rate sensitivity, activation volume). The obtained results will be compared with those of conventional 316L SS and discussed in terms of hydrogen effect on plastic deformation and microstructure. Please click Additional Files below to see the full abstract

    Nanopores of carbon nanotubes as practical hydrogen storage media

    Get PDF
    We report on hydrogen desorption mechanisms in the nanopores of multiwalled carbon nanotubes (MWCNTs). The as-grown MWCNTs show continuous walls that do not provide sites for hydrogen storage under ambient conditions. However, after treating the nanotubes with oxygen plasma to create nanopores in the MWCNTs, we observed the appearance of a new hydrogen desorption peak in the 300–350 K range. Furthermore, the calculations of density functional theory and molecular dynamics simulations confirmed that this peak could be attributed to the hydrogen that is physically adsorbed inside nanopores whose diameter is approximately 1 nm. Thus, we demonstrated that 1 nm nanopores in MWCNTs offer a promising route to hydrogen storage media for onboard practical applications

    Successful Treatment of an Iatrogenic Giant Femoral Artery Pseudoaneurysm With Percutaneous Thrombin Injection

    Get PDF
    A femoral artery pseudoaneurysm (FAP) is one of the most troublesome complications following invasive procedures related to the femoral arterial access. Post-procedure FAP rarely occurs; however, its occurrence tends to increase with the more frequently antiplatelet agents, anticoagulants, and larger-sized catheter used for interventional procedures. Traditionally, surgical repair has been considered as the standard treatment modality for FAP; however, less invasive methods currently exist such as blind manual or ultrasound-guided compression repair (UGCR) as well as percutaneous thrombin injection, both of which have replaced the need for surgery. We report a case of a giant pseudoaneurysm in a femoral artery, which had developed as a complication of stenting in a patient with carotid artery stenosis and ischemic heart disease, and was subsequently successfully treated using percutaneous thrombin injection

    Current advances of epigenetics in periodontology from ENCODE project: a review and future perspectives

    Get PDF
    Background The Encyclopedia of DNA Elements (ENCODE) project has advanced our knowledge of the functional elements in the genome and epigenome. The aim of this article was to provide the comprehension about current research trends from ENCODE project and establish the link between epigenetics and periodontal diseases based on epigenome studies and seek the future direction. Main body Global epigenome research projects have emphasized the importance of epigenetic research for understanding human health and disease, and current international consortia show an improved interest in the importance of oral health with systemic health. The epigenetic studies in dental field have been mainly conducted in periodontology and have focused on DNA methylation analysis. Advances in sequencing technology have broadened the target for epigenetic studies from specific genes to genome-wide analyses. Conclusions In line with global research trends, further extended and advanced epigenetic studies would provide crucial information for the realization of comprehensive dental medicine and expand the scope of ongoing large-scale research projects.This research was supported by Grants from MSIP/IITP (2017-0-00398) and Basic Science Research Program (2016R1A1A3A04004838/2020R1 C1C1005830) through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore