5 research outputs found

    The non-coding landscape of head and neck squamous cell carcinoma.

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease marked by frequent recurrence and metastasis and stagnant survival rates. To enhance molecular knowledge of HNSCC and define a non-coding RNA (ncRNA) landscape of the disease, we profiled the transcriptome-wide dysregulation of long non-coding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA) using RNA-sequencing data from 422 HNSCC patients in The Cancer Genome Atlas (TCGA). 307 non-coding transcripts differentially expressed in HNSCC were significantly correlated with patient survival, and associated with mutations in TP53, CDKN2A, CASP8, PRDM9, and FBXW7 and copy number variations in chromosomes 3, 5, 7, and 18. We also observed widespread ncRNA correlation to concurrent TP53 and chromosome 3p loss, a compelling predictor of poor prognosis in HNSCCs. Three selected ncRNAs were additionally associated with tumor stage, HPV status, and other clinical characteristics, and modulation of their expression in vitro reveals differential regulation of genes involved in epithelial-mesenchymal transition and apoptotic response. This comprehensive characterization of the HNSCC non-coding transcriptome introduces new layers of understanding for the disease, and nominates a novel panel of transcripts with potential utility as prognostic markers or therapeutic targets

    Transcriptome sequencing uncovers novel long noncoding and small nucleolar RNAs dysregulated in head and neck squamous cell carcinoma.

    No full text
    Head and neck squamous cell carcinoma persists as one of the most common and deadly malignancies, with early detection and effective treatment still posing formidable challenges. To expand our currently sparse knowledge of the noncoding alterations involved in the disease and identify potential biomarkers and therapeutic targets, we globally profiled the dysregulation of small nucleolar and long noncoding RNAs in head and neck tumors. Using next-generation RNA-sequencing data from 40 pairs of tumor and matched normal tissues, we found 2808 long noncoding RNA (lncRNA) transcripts significantly differentially expressed by a fold change magnitude ≥2. Meanwhile, RNA-sequencing analysis of 31 tumor-normal pairs yielded 33 significantly dysregulated small nucleolar RNAs (snoRNA). In particular, we identified two dramatically down-regulated lncRNAs and one down-regulated snoRNA whose expression levels correlated significantly with overall patient survival, suggesting their functional significance and clinical relevance in head and neck cancer pathogenesis. We confirmed the dysregulation of these noncoding RNAs in head and neck cancer cell lines derived from different anatomic sites, and determined that ectopic expression of the two lncRNAs inhibited key EMT and stem cell genes and reduced cellular proliferation and migration. As a whole, noncoding RNAs are pervasively dysregulated in head and squamous cell carcinoma. The precise molecular roles of the three transcripts identified warrants further characterization, but our data suggest that they are likely to play substantial roles in head and neck cancer pathogenesis and are significantly associated with patient survival

    Transcriptome sequencing uncovers novel long noncoding and small nucleolar RNAs dysregulated in head and neck squamous cell carcinoma

    No full text
    Head and neck squamous cell carcinoma persists as one of the most common and deadly malignancies, with early detection and effective treatment still posing formidable challenges. To expand our currently sparse knowledge of the noncoding alterations involved in the disease and identify potential biomarkers and therapeutic targets, we globally profiled the dysregulation of small nucleolar and long noncoding RNAs in head and neck tumors. Using next-generation RNA-sequencing data from 40 pairs of tumor and matched normal tissues, we found 2808 long noncoding RNA (lncRNA) transcripts significantly differentially expressed by a fold change magnitude ≥2. Meanwhile, RNA-sequencing analysis of 31 tumor-normal pairs yielded 33 significantly dysregulated small nucleolar RNAs (snoRNA). In particular, we identified two dramatically down-regulated lncRNAs and one down-regulated snoRNA whose expression levels correlated significantly with overall patient survival, suggesting their functional significance and clinical relevance in head and neck cancer pathogenesis. We confirmed the dysregulation of these noncoding RNAs in head and neck cancer cell lines derived from different anatomic sites, and determined that ectopic expression of the two lncRNAs inhibited key EMT and stem cell genes and reduced cellular proliferation and migration. As a whole, noncoding RNAs are pervasively dysregulated in head and squamous cell carcinoma. The precise molecular roles of the three transcripts identified warrants further characterization, but our data suggest that they are likely to play substantial roles in head and neck cancer pathogenesis and are significantly associated with patient survival
    corecore