14 research outputs found

    Targeting a Hidden Enemy: Pyriproxyfen Autodissemination Strategy for the Control of the Container Mosquito Aedes albopictus in Cryptic Habitats.

    No full text
    BACKGROUND:The Asian tiger mosquito, Aedes albopictus, is a vector of dengue, Chikungunya, and Zika viruses. This mosquito inhabits a wide range of artificial water-holding containers in urban and suburban areas making it difficult to control. We tested the hypothesis that female-driven autodissemination of an insect growth regulator could penetrate cryptic oviposition habitats difficult to treat with conventional insecticidal sprays. METHODOLOGY:Oviposition preferences of Ae. albopictus females for open and cryptic cups were tested in semi-field experiments. Two conventional larvicidal sprayers were tested to determine droplet penetration and larvicidal efficacy in open and cryptic habitats using Bacillus thuringiensis var. israelensis (Bti) in the field. Finally, the efficacy of pyriproxyfen autodissemination stations was assessed in cryptic and open cups in residential areas during 2013 and 2014. PRINCIPAL FINDINGS:Gravid females strongly preferred cryptic (53.1±12.9 eggs/cup) over open (10.3±4.3 eggs/cup) cups for oviposition. Cryptic cups showed limited droplet penetration and produced 0.1-0.3% larval mortality with a conventional backpack and low-volume sprays of Bti. The autodissemination stations effectively contaminated these cryptic cups (59.3-84.6%) and produced 29.7-40.8% pupal mortality during 2013-2014. Significant pupal mortality was also observed in open cups. CONCLUSIONS:The autodissemination station effectively exploits the oviposition behavior of wild gravid females to deliver pyriproxyfen to targeted oviposition habitats. Although the pupal mortality in cryptic cups was relatively lower than expected for the effective vector control. Autodissemination approach may be a suitable supporting tool to manage Ae. albopictus immatures in the cryptic habitats those are less accessible to conventional larvicidal sprays

    Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India

    Get PDF
    Abstract Background Microbiota inhabiting midguts of mosquitoes play a key role in the host - parasite interaction and enhance vectorial capacity of viral diseases like dengue and chikungunya fevers. Mosquito midgut is considered to be an important site for host-pathogen interaction and pathogen survival is thought to be an outcome of this interaction. In the present study we examined the bacterial community in the midgut of Aedes mosquitoes in Arunanchal Pradesh, India, a subtropical zone where dengue fever is reported to be emerging. Method Larvae and pupa of Aedes mosquitoes were collected from a biodiversity hotspot, Bhalukpong, Arunachal Pradesh, India. 16S rRNA gene sequences were used for identification of isolated bacterial population from each species of mosquitoes. We used various diversity indices to assess the diversity and richness of the bacterial isolates in both mosquito species. Result On the basis of 16S rRNA gene sequence analysis a total of 24 bacterial species from 13 genera were identified belonging to 10 families of four major phyla. Phylum Proteobacteria was dominant followed by Firmicutes, Bacteroidetes and Actinobacteria. The midgut bacteria belonging to the phylum Proteobacteria and Firmicutes were isolated from both Ae. albopictus and Ae. aegypti, whereas, bacteria belonging to phylum Bacteroidetes and Actinobacteria were isolated only from Ae. albopictus and Ae. aegypti respectively. Enterobacter cloacae was the dominant bacterial species in both Ae. albopictus (33.65 %) and Ae. aegypti (56.45 %). Bacillus aryabhattai (22.78 %) was the second most common bacterial species in Ae. albopictus whereas, in Ae. aegypti the second most common bacterial species was Stenotrophomonas maltophilia (7.44 %). Conclusion The family Enterobacteriaceae of phylum Proteobacteria was dominant in both species of Aedes mosquitoes. To the best of our knowledge, this is the first attempt to study midgut microbiota from a biodiversity hotspot in Northeastern India. Some bacterial genera Enterobacter and Acinetobacter isolated in this study are known to play important roles in parasite-vector interaction. Information on midgut microflora may lead towards the development of novel, safe, and effective strategies to manipulate the vectorial capacity of mosquitoes

    Targeting a Hidden Enemy: Pyriproxyfen Autodissemination Strategy for the Control of the Container Mosquito <i>Aedes albopictus</i> in Cryptic Habitats - Fig 5

    No full text
    <p>Weekly percent pupal mortality (A) and pyriproxyfen contamination (B) in open and cryptic cups during 2014 field experiment. Significant difference indicated by * (<i>p</i><0.05). Data are shown as mean ± SE.</p

    Midgut Microbial Community of <i>Culex quinquefasciatus</i> Mosquito Populations from India

    Get PDF
    <div><p>The mosquito <i>Culex quinquefasciatus</i> is a ubiquitous species that serves as a major vector for west nile virus and lymphatic filariasis. Ingestion of bloodmeal by females triggers a series of physiological processes in the midgut and also exposes them to infection by these pathogens. The bacteria normally harbored in the midgut are known to influence physiology and can also alter the response to various pathogens. The midgut bacteria in female <i>Cx. quinquefasciatus</i> mosquitoes collected over a large geographical area from India was studied. Examination of 16S ribosomal DNA amplicons from culturable microflora revealed the presence of 83 bacterial species belonging to 31 bacterial genera. All of these species belong to three phyla i.e. Proteobacteria, Firmicutes and Actinobacteria. Phylum Proteobacteria was the most dominant phylum (37 species), followed by Firmicutes (33 species) and Actinobacteria (13 species). Phylum Proteobacteria, was dominated by members of γ-proteobacteria class. The genus <i>Staphylococcus</i> was the largest genus represented by 11 species whereas <i>Enterobacter</i> was the most prevalent genus and recovered from all the field stations except Leh. Highest bacterial prevalence was observed from Bhuj (22 species) followed by Nagrota (18 species), Masimpur (18 species) and Hathigarh (16 species). Whereas, least species were observed from Leh (8 species). It has been observed that individual mosquito harbor extremely diverse gut bacteria and have very small overlap bacterial taxa in their gut. This variation in midgut microbiota may be one of the factors responsible for variation in disease transmission rates or vector competence within mosquito population. The present data strongly encourage further investigations to verify the potential role of the detected bacteria in mosquito for the transmission of lymphatic filariasis and west nile virus. To the best of our knowledge this is the first study on midgut microbiota of wild <i>Cx. quinquefasciatus</i> from over a large geographical area.</p></div
    corecore