27 research outputs found

    A study of selected aspects of the operation of thermoelectric generator incorporated in a biomass-fired stove

    No full text
    High demands in the field of energy efficiency and clean combustion make it necessary to looking for the new developments in the field of stoves, fireplaces and stove-fireplaces with accumulation. An interesting idea is to use the thermoelectric modules, which receive a heat from flue gas and convert it to the electricity. Electricity generated in this way may be used to power combustion optimizers and other components. This paper shows results of studied carried out to determine the possibility of combined heat and power generation using the stove-fireplace with accumulation. Thermoelectric generator with maximum hot side temperature at a level of 150°C was placed on the surface of the exchanger. Cooling down was realized using the dedicated water exchanger as well as the heat sink without and with an air fan. The experimental results allowed to define the effect of the different cooling systems on the output TEG voltage. Moreover, dependence of the current-voltage characteristics and generated power from the temperature was obtained

    Prototypical Biomass-Fired Micro-Cogeneration Systems—Energy and Ecological Analysis

    No full text
    Combined heat and power systems dedicated to micro-scale applications are currently increasing in popularity. The use of such systems is beneficial from the standpoint of increasing the usage of renewable energy, increasing energy efficiency and reducing CO2 emissions into the atmosphere. This paper shows two examples of prototypical micro-cogeneration systems powered by biomass. In the first, smaller one, electricity is generated in thermoelectric generators using heat from the wood-fired stove. The second one is equipped with a 100 kWt batch boiler and operates according to a modified Rankine cycle. The energy and ecological analysis were conducted and discussed, including selected aspects of heat and power generation and gaseous pollutant emission. Measurements were performed using a dedicated control and measurement station with a PLC controller. As was shown, thermoelectric generators operated respectively with the power of 22.5 We in the case of the air-cooled unit and 31.2 We in the case of the water-cooled unit. On the other hand, the maximum power level of ca. 1145 We was obtained in the system with a batch boiler operating according to a modified Rankine cycle. The ecological analysis showed that the average amount of CO emission during the wood combustion in the tested stove was 1916 mg/m3 (in the combustion phase). In the case of straw combustion, it was characterized by lower CO2 emissions compared to coal, but higher CO2 emissions compared to gasoline and natural gas. Based on the obtained results, some outlines for the systems development were given

    The comparison of solar water heating system operation parameters calculated using traditional method and dynamic simulations

    No full text
    The proper design of renewable energy based systems is really important to provide their efficient and safe operation. The aim of this paper is to compare the results obtained during traditional static calculations, with the results of dynamic simulations. For this reason, simulations of solar water heating (SWH) system, designed for a typical residential building, were conducted in the TRNSYS (Transient System Simulation Tool). Carried out calculations allowed to determine the heat generation in the discussed system as well as to estimate the efficiency of considered installation. Obtained results were compared with the results from other available tool based on the static calculations. It may be concluded, that using dynamic simulations at the designing stage of renewable energy based systems may help to avoid many exploitation problems (including low efficiency, overheating etc.) and allows to provide safe exploitation of such installations

    A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling

    No full text
    Numerous numerical and experimental studies have been conducted regarding the Concentrated Photovoltaic Thermal (CPVT) system because of its significant potential for efficient conversion of solar energy. The overall efficiency of the CPVT system is strongly dependent on the device, which extracts excess heat from photovoltaic cells. The most efficient cooling technology involves active cooling, which means that heat is collected from the PV cell via the forced flow of heat transfer fluid. This research paper provides an extensive discussion on devices dedicated to active-cooling CPVT systems, taking into account the latest solutions. First, a short introduction regarding CPVT systems and their main components is presented. The second part of this study presents state-of-the-art solutions in the field of heat extraction devices for the active cooling of photovoltaic cells. The available solutions are classified into two main groups depending on the scale of internal channels: macro- and micro-. Each geometry of the heat receiver is juxtaposed with the corresponding concentrating element, photovoltaic cell, concentration ratio, heat transfer fluid, and operating parameters of the specified system. In addition, this paper discusses the advantages and disadvantages of various devices for heat extraction and provides a comparative study of these devices. Finally, a set of recommendations for CPVT cooling devices is provided

    Biomass-powered micro cogeneration system based on the modified Rankine Cycle operation - the initial tests

    No full text
    This paper shows results of initial tests of prototypical microcogeneration system based on the modified Rankine cycle operation. This system is powered by a 100 kW straw-fired batch boiler which was adapted to operate as a high temperature heat source. Thermal oil, heated up to 190-200°C, transfers heat to two shell and tube heat exchangers (evaporator and superheater). Steam powers a 2-cylinder, double-acting, 20-horsepower steam engine. Then, it is condensed in a condenser (another shell and tube heat exchanger) and pumped to the degasser. Finally, condensate is pumped to the evaporator and the whole process starts again. The steam engine is connected with a power generator. The operation of the developed micro-cogeneration system is controlled by the control and measurement system based on WAGO PFC200 PLC controller. The following parameters are recording: temperature, pressure and medium flow (in the boiler, oil, steam and water circuits). The results of the initial tests are promising. Power generated in the system is actually about 1,0 kWel. Such power is sufficient for supplying a part of the system’s equipment. On the other hand, it is finally expected to ensure selfsufficient operation of the tested system

    The analysis of the hydropower potential in Podkarpackie Voivodship

    No full text
    The paper presents an analysis of the use and potential of hydropower in Podkarpackie (Subcarpathian) Voivodship. The current usage of hydropower in the Region is presented, divided for range of generated power, geographical location and given rivers. Existing and planned artificial water reservoirs are taken into consideration in frame of hydropower development in the Region. Selected case studies related to varied hydropower plants are discussed. Problems connected with development of the hydropower were identified and considered. For each county in the Region theoretical available power possible to install in the main rivers was indicated, taking into account environmental aspects, technical problems with connection to the electrical grid and overall possibility of the facility installation. For each county communities with the best favorable situation are indicated. It is discussed the analysis of the evaluation of the use of hydropower in Podkarpackie Voivodship and provided information on planned and considered investments in hydropower plants. In addition, an analysis of the energy potential of the main rivers of the Podkarpackie Region have been procced to indicating the most favorable areas for location of hydropower plants. Moreover, given the environmental conditions, an analysis of the power estimation of the hydropower plants were made

    Numerical and Experimental Analysis of a Prototypical Thermoelectric Generator Dedicated to Wood-Fired Heating Stove

    No full text
    The typical operating range of domestic heating devices includes only heat generation. However, the availability of combined heat and power generation in microscale devices is currently becoming a more and more interesting option. This paper shows the experimental and numerical analysis of the possibility of developing a micro-cogeneration system equipped with a wood-fired heating stove and a prototype of the thermoelectric generator equipped with low-price thermoelectric modules. In the first step, mathematical modeling made it possible to analyze different configurations of the hot side of the thermoelectric generator (computational fluid dynamics was used). Next, experiments have been conducted on the prototypical test rig. The maximum power obtained during the discussed combustion process was 15.9 We when the flue gas temperature was approximately 623 K. Assuming a case, when such value of generated power occurred during the whole main phase, the energy generated would be at a level of approximately 33.1 Whe, while the heat transferred to the water would be approximately 1 078.0 Whth. In addition to the technical aspects, the economic premises of the proposed solution were analyzed. As was shown, an installation of TEG to the existing stove is economically not viable: the Simply Payback Time will be approximately 28.9–66.1 years depending on the analyzed scenario. On the other hand, the SPBT would be significantly shorter, when the installation of the stove with an integrated thermoelectric generator was considered (approximately 5.4 years). However, it should be noted that the introduction of the power generating system to a heat source can provide fully or partially network-independent operation of the hot water and heating systems
    corecore