73 research outputs found

    A homology model of restriction endonuclease SfiI in complex with DNA

    Get PDF
    BACKGROUND: Restriction enzymes (REases) are commercial reagents commonly used in recombinant DNA technologies. They are attractive models for studying protein-DNA interactions and valuable targets for protein engineering. They are, however, extremely divergent: the amino acid sequence of a typical REase usually shows no detectable similarities to any other proteins, with rare exceptions of other REases that recognize identical or very similar sequences. From structural analyses and bioinformatics studies it has been learned that some REases belong to at least four unrelated and structurally distinct superfamilies of nucleases, PD-DxK, PLD, HNH, and GIY-YIG. Hence, they are extremely hard targets for structure prediction and homology-based inference of sequence-function relationships and the great majority of REases remain structurally and evolutionarily unclassified. RESULTS: SfiI is a REase which recognizes the interrupted palindromic sequence 5'GGCCNNNN^NGGCC3' and generates 3 nt long 3' overhangs upon cleavage. SfiI is an archetypal Type IIF enzyme, which functions as a tetramer and cleaves two copies of the recognition site in a concerted manner. Its sequence shows no similarity to other proteins and nothing is known about the localization of its active site or residues important for oligomerization. Using the threading approach for protein fold-recognition, we identified a remote relationship between SfiI and BglI, a dimeric Type IIP restriction enzyme from the PD-DxK superfamily of nucleases, which recognizes the 5'GCCNNNN^NGGC3' sequence and whose structure in complex with the substrate DNA is available. We constructed a homology model of SfiI in complex with its target sequence and used it to predict residues important for dimerization, tetramerization, DNA binding and catalysis. CONCLUSIONS: The bioinformatics analysis suggest that SfiI, a Type IIF enzyme, is more closely related to BglI, an "orthodox" Type IIP restriction enzyme, than to any other REase, including other Type IIF REases with known structures, such as NgoMIV. NgoMIV and BglI belong to two different, very remotely related branches of the PD-DxK superfamily: the Ī±-class (EcoRI-like), and the Ī²-class (EcoRV-like), respectively. Thus, our analysis provides evidence that the ability to tetramerize and cut the two DNA sequences in a concerted manner was developed independently at least two times in the evolution of the PD-DxK superfamily of REases. The model of SfiI will also serve as a convenient platform for further experimental analyses

    Crystal structure and mechanism of action of the N6-methyladenine-dependent type IIM restriction endonuclease R.DpnI.

    Get PDF
    DNA methylation-dependent restriction enzymes have many applications in genetic engineering and in the analysis of the epigenetic state of eukaryotic genomes. Nevertheless, high-resolution structures have not yet been reported, and therefore mechanisms of DNA methylation-dependent cleavage are not understood. Here, we present a biochemical analysis and high-resolution DNA co-crystal structure of the N(6)-methyladenine (m6A)-dependent restriction enzyme R.DpnI. Our data show that R.DpnI consists of an N-terminal catalytic PD-(D/E)XK domain and a C-terminal winged helix (wH) domain. Surprisingly, both domains bind DNA in a sequence- and methylation-sensitive manner. The crystal contains R.DpnI with fully methylated target DNA bound to the wH domain, but distant from the catalytic domain. Independent readout of DNA sequence and methylation by the two domains might contribute to R.DpnI specificity or could help the monomeric enzyme to cut the second strand after introducing a nick

    THE WAY YOUNG PEOPLE SEE THE MENTALLY ILL: A QUESTIONNAIRE STUDY

    Get PDF
    Background: The stigmatizing of the mentally ill is quite common and has numerous social and economical consequences for these individuals. Subjects and methods: The aim of this paper was to examine young peoplesā€™ beliefs regarding the mentally disordered. The authorsā€™ questionnaire regarding the intervieweesā€™ age, gender, social background and their opinions on the mentally ill was conducted among a popular portalā€™s users. Results: 11900 people were questioned, including 71% women. 30% of the interviewees were under the age of 19, while 34% of them were between 19 and 24 years old and 36% were over 24. 39% of the interviewees stated they closely knew at least one mentally ill person. 44% of the questioned believed a lot of criminal offenders were mentally ill. 66% of interviewees would not mind sharing a flat with a mentally disordered person, 64% would agree to work with one. Those who personally knew a mentally disordered person were more inclined to share a flat or start a relationship with such an individual, than the rest of the interviewed (51% vs. 37% for flat sharing and 38% vs. 26% for starting a relationship, p<0.001). More questioned under the age of 19 believed that significant number of criminal offenders were mentally ill, than those over the age of 24 (50% vs. 37%, p<0.001). Conclusions: According to the acquired data, many young Poles believe that the mentally disordered are inclined to break the law and behave aggressively. These opinions seem to be related amongst others to age and gender, and they result in unwillingness to have relations with the mentally disordered

    Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase

    Get PDF
    HIV-1 reverse transcriptase (HIV-1 RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase-catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical crosslinking method together with MD simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT-nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly-rA/dT tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly-rA/dT tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the polyrA/dT segment and help advance our understanding of the mechanisms in viral RNA reverse transcription

    OHVIRA syndrome in 14-year-old girl

    Get PDF
    • ā€¦
    corecore