89 research outputs found

    The Effect of the Gaseous Environment on the Electrical Conductivity of Multi-Walled Carbon Nanotube Films over a Wide Temperature Range.

    Get PDF
    The surrounding gas atmosphere can have a significant influence on the electrical properties of multi-walled carbon nanotube (CNT) ensembles. In this study, we subjected CNT films to various gaseous environments or vacuum to observe how such factors alter the electrical resistance of networks at high temperatures. We showed that the removal of adsorbed water and other contaminants from the surface under reduced pressure significantly affects the electrical conductivity of the material. We also demonstrated that exposing the CNT films to the hydrogen atmosphere (as compared to a selection of gases of inert and oxidizing character) at elevated temperatures results in a notable reduction of electrical resistance. We believe that the observed sensitivity of the electrical properties of the CNT films to hydrogen or vacuum at elevated temperatures could be of practical importance

    Copper-decorated CNTs as a possible electrode material in supercapacitors

    Get PDF
    Copper is probably one of the most important metal used in the broad range of electronic applications. It has been developed for many decades, and so it is very hard to make any further advances in its electrical and thermal performance by simply changing the manufacture to even more oxygen-free conditions. Carbon nanotubes (CNTs) due to their excellent electrical, thermal and mechanical properties seem like an ideal component to produce Cu-CNT composites of superior electrochemical performance. In this report we present whether Cu-CNT contact has a beneficial influence for manufacturing of a new type of carbon-based supercapacitor with embedded copper particles. The prepared electrode material was examined in symmetric cell configuration. The specific capacity and cyclability of composite were compared to parent CNT and oxidized CNT

    A computational study of the quantum transport properties of a Cu-CNT composite.

    Get PDF
    The quantum transport properties of a Cu-CNT composite are studied using a non-equilibrium Green's function approach combined with the self-consistent-charge density-functional tight-binding method. The results show that the electrical conductance of the composite depends strongly on CNT density and alignment but more weakly on chirality. Alignment with the applied bias is preferred and the conductance of the composite increases as its mass density increases.The European Research Council provided financial support for this work under the Seventh Framework Program FP7/2007-2013 (ERC grant agreement no. 259061). Computational support from the Cambridge High Performance Computing Cluster is gratefully acknowledged.This is the final version of the article. It first appeared from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C5CP01470

    The true amphipathic nature of graphene flakes: a versatile 2D stabilizer

    Get PDF
    The fundamental colloidal properties of pristine graphene flakes remain incompletely understood, with conflicting reports about their chemical character, hindering potential applications that could exploit the extraordinary electronic, thermal, and mechanical properties of graphene. Here, the true amphipathic nature of pristine graphene flakes is demonstrated through wet‐chemistry testing, optical microscopy, electron microscopy, and density functional theory, molecular dynamics, and Monte Carlo calculations, and it is shown how this fact paves the way for the formation of ultrastable water/oil emulsions. In contrast to commonly used graphene oxide flakes, pristine graphene flakes possess well‐defined hydrophobic and hydrophilic regions: the basal plane and edges, respectively, the interplay of which allows small flakes to be utilized as stabilizers with an amphipathic strength that depends on the edge‐to‐surface ratio. The interactions between flakes can be also controlled by varying the oil‐to‐water ratio. In addition, it is predicted that graphene flakes can be efficiently used as a new‐generation stabilizer that is active under high pressure, high temperature, and in saline solutions, greatly enhancing the efficiency and functionality of applications based on this materia

    Scattering of terahertz radiation from oriented carbon nanotube films

    Get PDF
    We report on the use of terahertz time-domain spectroscopy to measure scattering from multi-walled carbon nanotubes aligned normal to the film plane. Measurements indicate scattering from the nanotubes is significantly stronger than for bulk metal

    Distinct chemical changes in abdominal but not in thoracic aorta upon atherosclerosis studied using fiber optic Raman spectroscopy

    Get PDF
    Fiber optic Raman spectroscopy and Raman microscopy were used to investigate alterations in the aorta wall and the surrounding perivascular adipose tissue (PVAT) in the murine model of atherosclerosis (Apoe-/-/Ldlr-/- mice). Both abdominal and thoracic parts of the aorta were studied to account for the heterogenic chemical composition of aorta and its localization-dependent response in progression of atherosclerosis. The average Raman spectra obtained for both parts of aorta cross sections revealed that the chemical composition of intima-media layers along aorta remains relatively homogeneous while the lipid content in the adventitia layer markedly increases with decreasing distance to PVAT. Moreover, our results demonstrate that the increase of the lipid to protein ratio in the aorta wall correlates directly with the increased unsaturation level of lipids in PVAT and these changes occur only in the abdominal, but not in thoracic, aorta. In summary, distinct pathophysiological response in the aortic vascular wall could be uncovered by fiber optic Raman spectroscopy based on simple parameters detecting chemical contents of lipids in PVAT

    Extreme magneto-transport of bulk carbon nanotubes in sorted electronic concentrations and aligned high performance fiber

    Get PDF
    We explored high-field (60T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classical MR involving electronic mobility. Subtracting high-field fits from the aligned fiber's MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber's room temperature resistance, appears to lack MR field dependence

    Carbon nanotubes and graphene radiant heater printed on a cementitious flooring substrate: a feasibility study

    Get PDF
    The human activity of heating homes contributes a significant amount of CO2 in the total of the UK Green House Gases and the process of retrofitting residential stock and equipping new dwellings with lower and carbon neutral technologies could be complex, costly and physically challenging. This paper investigates the feasibility of a composite mixture of carbon nanotubes (CNT) and graphene material applied as a printed layer to the underside of a cementitious flooring substrate, acting as a radiant underfloor heater. Screening sample tests confirm instant radiant heating at low DC voltages with remarkably low conduction heat losses through the substrate

    Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    Get PDF
    Preparation of biocompatible and electrically-conducting chitin nanotube composite scaffold for potential use in implantable electrode for stimulation and repair of neurons.</p
    corecore