13 research outputs found

    Fatigue failure probability estimation of the 7075-T651 aluminum alloy under multiaxial loading based on the life-dependent material parameters concept

    No full text
    Fatigue life prediction under a requested failure probability is essential to the modern engineering design process. Hence, the validation of multiaxial life prediction models is important with regard to not only the median fatigue lives but also their ability to estimate the failure probability. Herein, the concept of life-dependent material parameters is enhanced by introducing the fatigue life scatter assessment methodology. Aiming to analyze the ability of the life-dependent material parameter concept to calculate the failure probability distribution, we verified this concept’s new ability on a set of stress-based fatigue criteria and new experimental results on 7075-T651 aluminum alloy

    Application of the S-N Curve Mean Stress Correction Model in Terms of Fatigue Life Estimation for Random Torsional Loading for Selected Aluminum Alloys

    No full text
    The paper presents the experimental fatigue test results for cyclic constant amplitude loading conditions for the case of the torsion of the PA4 (AW-6082-T6), PA6 (AW-2017A-T4) and PA7 (AW-2024-T3) aluminum alloy for a drilled diabolo type test specimen. The tests have been performed for the stress asymmetry ratios R = −1, R = −0.7, R = −0.5 and R = −0.3. The experimental results have been used in the process of a fatigue life estimation performed for a random generated narrowband stress signal with a zero and a non-zero global mean stress value. The calculations have been performed within the time domain with the use of the rainflow cycle counting method and the Palmgren−Miner damage hypothesis. The mean stress compensation has been performed with the S-N curve mean stress model proposed by Niesłony and Böhm. The model has been modified in terms of torsional loading conditions. In order to obtain an appropriate R = 0 ratio S-N curve fatigue strength amplitude, the Smith−Watson−Topper model was used and compared with literature fatigue strength amplitudes. The presented solution extends the use of the correction model in terms of the torsional loading condition in order to obtain new S-N curves for other R values on the basis of the R = −1 results. The work includes the computational results for new fatigue curves with and without the mean stress effect correction. The results of the computations show that the mean stress effect plays a major role in the fatigue life assessment of the tested aluminum alloys and that the method can be used to assess the fatigue life under random conditions

    Using the Smith-Watson-Topper Parameter and Its Modifications to Calculate the Fatigue Life of Metals: The State-of-the-Art

    No full text
    The Smith-Watson-Topper parameter (SWT) in its original form was designed to estimate the fatigue life of metal materials in a uniaxial load state (tension-compression) in the range up to fatigue crack initiation, with non-zero mean values. This parameter is based on the analysis of both stress and strain. Therefore, the stress-strain criterion is the focus, rather than the energy criterion. This paper presents the original SWT model and its numerous modifications. The first part presents different versions of this parameter defined by the normal parameters. Then, it presents versions defined through the tangent parameter and the most promising parameter defined through the tangent and normal parameters. It was noted that the final form of the equivalent value is defined either by stress or by an energy parameter. Therefore, the possible characteristics from which the fatigue life can be determined are also presented

    Using the Smith-Watson-Topper Parameter and Its Modifications to Calculate the Fatigue Life of Metals: The State-of-the-Art

    No full text
    The Smith-Watson-Topper parameter (SWT) in its original form was designed to estimate the fatigue life of metal materials in a uniaxial load state (tension–compression) in the range up to fatigue crack initiation, with non-zero mean values. This parameter is based on the analysis of both stress and strain. Therefore, the stress–strain criterion is the focus, rather than the energy criterion. This paper presents the original SWT model and its numerous modifications. The first part presents different versions of this parameter defined by the normal parameters. Then, it presents versions defined through the tangent parameter and the most promising parameter defined through the tangent and normal parameters. It was noted that the final form of the equivalent value is defined either by stress or by an energy parameter. Therefore, the possible characteristics from which the fatigue life can be determined are also presented

    Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    No full text
    The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression

    Heterogeneous effect of aging temperature on the fatigue life of additively manufactured thin-walled 18Ni300 maraging steel tubular specimen

    No full text
    Optimizing the geometry for material savings, or heat transfer, can yield thin-walled additively manufactured parts. A wall thickness of only a few hatching spaces can be fabricated using laser powder bed fusion (LPBF). However, the unmachined surface quality and subsurface defects in the low-thickness wall put the load-bearing capacity of the manufactured part under scrutiny. This study aimed to determine the fatigue and quasi-static strengths of nominally 0.5-mm thick tubular specimens of LPBF 18Ni300 maraging steel with respect to the aging temperature (AT). The experimental tests were conducted on six batches of unmachined specimens: non-aged and age-hardened for 6 h at different temperatures, i.e., 450, 470, 490, 530, and 585 °C. The void distribution and specimen surface were characterized using X-ray micro-computed tomography. The heterogeneous effect of AT on fatigue life was recognized by a novel application of the Gaussian process for regression. The mechanical properties of a 0.5-mm thick tubular specimen were equal to or higher than those of a full cross-section specimen. Furthermore, the optimal AT to obtain the highest fatigue strength was 520 °C for low-cycle fatigue, decreasing to 480 °C for high-cycle fatigue
    corecore