10 research outputs found

    Jamming versus Glass Transitions

    Full text link
    Recent ideas based on the properties of assemblies of frictionless particles in mechanical equilibrium provide a perspective of amorphous systems different from that offered by the traditional approach originating in liquid theory. The relation, if any, between these two points of view, and the relevance of the former to the glass phase, has been difficult to ascertain. In this paper we introduce a model for which both theories apply strictly: it exhibits on the one hand an ideal glass transition and on the other `jamming' features (fragility, soft modes) virtually identical to that of real systems. This allows us to disentangle the different contents and domains of applicability of the two physical phenomena.Comment: 4 pages, 6 figures Modified content, new figur

    Constraint optimization and landscapes

    Full text link
    We describe an effective landscape introduced in [1] for the analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring. This geometric construction reexpresses these problems in the more familiar terms of optimization in rugged energy landscapes. In particular, it allows one to understand the puzzling fact that unsophisticated programs are successful well beyond what was considered to be the `hard' transition, and suggests an algorithm defining a new, higher, easy-hard frontier.Comment: Contribution to STATPHYS2

    Energy gaps in quantum first-order mean-field-like transitions: The problems that quantum annealing cannot solve

    Full text link
    We study first-order quantum phase transitions in models where the mean-field traitment is exact, and the exponentially fast closure of the energy gap with the system size at the transition. We consider exactly solvable ferromagnetic models, and show that they reduce to the Grover problem in a particular limit. We compute the coefficient in the exponential closure of the gap using an instantonic approach, and discuss the (dire) consequences for quantum annealing.Comment: 6 pages, 3 figure

    Critical scaling and heterogeneous superdiffusion across the jamming/rigidity transition of a granular glass

    Full text link
    The dynamical properties of a dense horizontally vibrated bidisperse granular monolayer are experimentally investigated. The quench protocol produces states with a frozen structure of the assembly, but the remaining degrees of freedom associated with contact dynamics control the appearance of macroscopic rigidity. We provide decisive experimental evidence that this transition is a critical phenomenon, with increasingly collective and heterogeneous rearrangements occurring at length scales much smaller than the grains' diameter, presumably reflecting the contact force network fluctuations. Dynamical correlation time and length scales soar on both sides of the transition, as the volume fraction varies over a remarkably tiny range (δϕ/ϕ103\delta \phi/\phi \sim 10^{-3}). We characterize the motion of individual grains, which becomes super-diffusive at the jamming transition ϕJ\phi_J, signaling long-ranged temporal correlations. Correspondingly, the system exhibits long-ranged four-point dynamical correlations in space that obey critical scaling at the transition density.Comment: 4 pages, 8 figure
    corecore