16 research outputs found

    Non-paretic Forelimb Training Does Not Interfere with Recovery of Paretic Forelimb Strength After Experimental Middle Cerebral Artery Occlusion

    Get PDF
    Humans often compensate with their unimpaired (non-paretic) forelimb after surviving a stroke. Research in rats suggests that this can be maladaptive after focal motor cortical strokes. Forelimb weakness is understudied in rodent models of stroke. The purpose of the study is to determine whether behavioral experience with the non-paretic forelimb differentially affects paretic forelimb strength recovery after ischemic injury caused by middle cerebral artery occlusion (MCAo). Because behavioral manipulations can influence patterns of neural connectivity post-stroke, the present study also examined how training with non-paretic limb influenced corticostriatal projections. After training to proficiency with the preferred forelimb on the Isometric Pull Task, rats underwent MCAo in the hemisphere contralateral to this limb. One week after MCAo, rats were probed for initial impairment level and then assigned to either Non-Paretic Limb Training (NPT) or non-training control conditions for 14 days. Paretic limb performance was probed one day later. All rats then received six weeks of Rehabilitative Training (RT). The anterograde tract tracer BDA was then injected into the lesioned hemisphere. Training with the non-paretic limb (NPT) does not interfere with paretic limb recovery on the Isometric Pull Task, increase reliance on the impaired forelimb, or influence ipsi corticostriatal axon quantities after MCAo. Compensatory use of the non-paretic forelimb after strokes involving subcortical damage or cortical damage primarily in the somatosensory region may not be maladaptive for strength. Understanding how behavioral recovery varies with lesion locus could influence clinical management of patients

    Nitric Oxide Facilitates Delivery and Mediates Improved Outcome of Autologous Bone Marrow Mononuclear Cells in a Rodent Stroke Model

    Get PDF
    Bone marrow mononuclear cells (MNC) represent an investigational treatment for stroke. The objective of this study was to determine the relevance of vasoactive mediators, generated in response to MNC injection, as factors regulating cerebral perfusion (CP), the biodistribution of MNC, and outcome in stroke.Long Evans rats underwent transient middle cerebral artery occlusion. MNC were extracted from the bone marrow at 22 hrs and injected via the internal carotid artery or the femoral vein 2 hours later. CP was measured with MRI or continuous laser Doppler flowmetry. Serum samples were collected to measure vasoactive mediators. Animals were treated with the Nitric Oxide (NO) inhibitor, L-NAME, to establish the relevance of NO-signaling to the effect of MNC. Lesion size, MNC biodistribution, and neurological deficits were assessed.CP transiently increased in the peri-infarct region within 30 min after injecting MNC compared to saline or fibroblast control. This CP increase corresponded temporarily to serum NO elevation and was abolished by L-NAME. Pre-treatment with L-NAME reduced brain penetration of MNC and prevented MNC from reducing infarct lesion size and neurological deficits.NO generation in response to MNC may represent a mechanism underlying how MNC enter the brain, reduce lesion size, and improve outcome in ischemic stroke

    Cryopreservation of Bone Marrow Mononuclear Cells Alters Their Viability and Subpopulation Composition but Not Their Treatment Effects in a Rodent Stroke Model

    No full text
    The systemic administration of autologous bone marrow (BM) derived mononuclear cells (MNCs) is under investigation as a novel therapeutic modality for the treatment of ischemic stroke. Autologous applications raise the possibility that MNCs could potentially be stored as a banked source. There have been no studies that investigate the effects of cryopreservation of BM-MNCs on their functional abilities in stroke models. In the present study, C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAo) for 60 minutes and then divided into two treatment groups: fresh MNCs versus cryopreserved MNCs. BM-MNCs were collected at 22 hours after MCAo and were stored in liquid nitrogen for 12 months in cryopreserved MNCs group. BM-MNCs cellular viability, composition, and phenotype of the various subpopulations of mice BM-MNCs were evaluated by flow cytometry, and the behavioral recovery of stroke animals was tested with freshly harvested MNCs versus cryopreserved MNCs by corner test and ladder rung test. We found that long-term cryopreservation negatively impacts the cellular viability of bone marrow MNCs. Cryopreservation also alters the cellular composition of various subpopulations within the MNCs. However, despite the changes observed in cryopreserved cells, both fresh and frozen MNCs have similar beneficial effect on behavioral and histological outcomes

    L-NAME inhibits the beneficial effect of MNCs.

    No full text
    <p>(A) Chronic infarct cavity at 28 days after stroke in animals treated with saline or MNCs. Animals at 24 hrs after stroke received saline followed by IV MNCs (10 million cells), or L-NAME followed by IV MNCs (10 million cells), or saline only. Lesion size was reduced by MNCs at 28 days after stroke. However, pre-treatment with L-NAME before MNC infusion abolished this reduction in lesion size (§p<0.05 compared with saline). The lesion size was calculated as a percent of the contralateral cortex N = 8 per group. (B) Neurological deficits serially evaluated after stroke in animals treated with saline IP followed by IV infusion of MNCs or L-NAME IP followed by IV infusion of MNCs. At 28 days, animals treated with saline followed by MNCs showed a significant reduction in deficits compared with animals treated with L-NAME+MNCs or compared with animals treated with saline only (§p<0.05). The x-axis represents the time in days after stroke. Baseline refers to the time point before stroke. N = 8 per group.</p
    corecore