9 research outputs found

    Stress hormone level and the welfare of captive European bison (Bison bonasus): the effects of visitor pressure and the social structure of herds

    No full text
    Abstract Background Captive European bison (Bison bonasus) play an active role in conservation measures for this species; this includes education, which may conflict with these animals’ welfare. The effect of the presence of visitors on the welfare of captive animals can be negative, positive or neutral. However, the response of a given species to visitors is difficult to predict, since even closely related species display varying levels of tolerance to captivity. The aim of the study was to compare immunoreactive fecal cortisol levels (regarded as an indicator of the level of physiological stress) in groups of captive European bison that differed in terms of their social structure and the level of visitor pressure. The second aim was to determine if there was a correlation between intestinal parasitic burden and immunoreactive fecal cortisol levels. Results Immunoreactive fecal cortisol levels were not influenced by sex or age. However, study site and the interaction between study site and visitor pressure were statistically significant. European bison in one enclosure presented higher levels of immunoreactive fecal cortisol on weekdays than at weekends. In the other two study sites, the levels did not differ between weekdays and weekends. No correlation was found between parasitological infestation and immunoreactive fecal cortisol levels. Conclusions Measurement of fecal cortisol metabolites could be a valuable method for further research into the welfare of European bison in captivity. More subtle factors such as individual animal characteristics, feeding systems, and the arrangement of enclosures can be of great importance in terms of the effect of visitors on animals. The results of this study can be used in guidelines for the management of European bison populations

    Intravitreally grafted CNTF-NS cells attenuate photoreceptor degeneration in <i>nclf</i> mice.

    No full text
    <p>A CNTF-NS cell clone was grafted into one (a, c, e) and a control-NS cell clone into the contralateral eye (b, d, f) of 14 days old <i>nclf</i> mice. Central retinal sections were stained with anti-recoverin antibodies and DAPI two (a, b), four (c, d) and six (e, f) weeks after transplantation. Note the thicker outer nuclear layer (onl) of CNTF-treated retinas when compared to control retinas at all post-transplantation time points. DAPI, 4’,6-diamidino-2-phenylindole; onl, outer nuclear layer. Bar in f (for a-f): 50 μm.</p

    Sustained Neural Stem Cell-Based Intraocular Delivery of CNTF Attenuates Photoreceptor Loss in the <i>nclf</i> Mouse Model of Neuronal Ceroid Lipofuscinosis

    No full text
    <div><p>A sustained intraocular administration of neurotrophic factors is among the strategies aimed at establishing treatments for currently untreatable degenerative retinal disorders. In the present study we have analyzed the neuroprotective effects of a continuous neural stem (NS) cell-based intraocular delivery of ciliary neurotrophic factor (CNTF) on photoreceptor cells in the <i>nclf</i> mouse, an animal model of the neurodegenerative lysosomal storage disorder variant late infantile neuronal ceroid lipofuscinosis (vLINCL). To this aim, we genetically modified adherently cultivated NS cells with a polycistronic lentiviral vector encoding a secretable variant of CNTF together with a Venus reporter gene (CNTF-NS cells). NS cells for control experiments (control-NS cells) were modified with a vector encoding the reporter gene tdTomato. Clonal CNTF-NS and control-NS cell lines were established using fluorescent activated cell sorting and intravitreally grafted into 14 days old <i>nclf</i> mice at the onset of retinal degeneration. The grafted cells preferentially differentiated into astrocytes that were attached to the posterior side of the lenses and the vitreal side of the retinas and stably expressed the transgenes for at least six weeks, the latest post-transplantation time point analyzed. Integration of donor cells into host retinas, ongoing proliferation of grafted cells or adverse effects of the donor cells on the morphology of the host eyes were not observed. Quantitative analyses of host retinas two, four and six weeks after cell transplantation revealed the presence of significantly more photoreceptor cells in eyes with grafted CNTF-NS cells than in eyes with grafted control-NS cells. This is the first demonstration that a continuous intraocular administration of a neurotrophic factor attenuates retinal degeneration in an animal model of neuronal ceroid lipofuscinosis.</p></div

    Expression of CNTF and the reporter genes in clonal CNTF-NS and control-NS cell lines.

    No full text
    <p>All cells in the clonal CNTF-NS cell line expressed the reporter gene Venus (a) and showed CNTF-immunoreactivity in the perinuclear region (b). Control-NS cells, in comparison, expressed the reporter gene tdTomato (c) but lacked detectable expression of the cytokine (d). CNTF, ciliary neurotrophic factor; DAPI, 4’,6-diamidino-2-phenylindole. Bar in d (for a-d): 20 μm.</p

    Lentiviral vectors and immunoblot analyses of culture supernatants from clonal CNTF-NS and control-NS cell lines.

    No full text
    <p>A lentiviral vector encoding a secretable variant of mouse ciliary neurotrophic factor (CNTF), an internal ribosome entry site (IRES) sequence of the encephalomyocarditis virus and a Venus reporter and a zeocin (ZEO) resistance gene separated by a P2A sequence of porcine teschovirus-1 (2A) under regulatory control of the cytomegalovirus enhancer/chicken ß-actin (CAG) promoter (a) was used to generate CNTF-secreting NS cells. NS cells for control experiments were transduced with a vector containing the CAG promoter, an IRES sequence and a tdTomato (tdTom) reporter gene fused to a blasticidin (BSD) resistance gene (b). Immunoblot analysis (c) of culture supernatants from the newly established CNTF-NS cell clone (clone 2) revealed elevated secretion levels of CNTF when compared to the original clonal CNTF-NS cell line (clone 1). Supernatants from control-NS cell clones (control) lacked detectable levels of the cytokine (c). Recombinant mouse CNTF (rmCNTF) was loaded as a reference. Ψ, packaging signal; cPPT, central polypurine tract; LoxP, recognition site of Cre recombinase; RRE, rev-responsive element; SIN-LTR, self-inactivating long-terminal repeat; wPRE, woodchuck hepatitis virus posttranscriptional regulatory element.</p

    CNTF and reporter gene expression in neural cell types derived from CNTF-NS cells and control-NS cells <i>in vitro</i>.

    No full text
    <p>CNTF-NS (a-c, g-i) and control-NS cells (d-f, j-l) were differentiated into neurons (a-f) or astrocytes (g-l). Note that all MAP-2-positive neurons (b) and GFAP-positive astrocytes (h) derived from CNTF-NS cells co-expressed the reporter gene Venus (a, g) and CNTF (c, i). Neurons (e) and astrocytes (k) derived from control-NS cells, in comparison, expressed the reporter gene tdTomato (d, j) but no detectable levels of the cytokine (f, l). CNTF, ciliary neurotrophic factor; DAPI, 4’,6-diamidino-2-phenylindole; GFAP, glial fibrillary acidic protein; MAP2, microtubule-associated protein 2. Bar in l (for a-l): 50 μm.</p

    Photoreceptor numbers in eyes of <i>nclf</i> mice with grafted CNTF-NS or control-NS cells at different post-transplantation time points.

    No full text
    <p>A CNTF-NS and a control-NS cell line were intravitreally grafted into 14 days old <i>nclf</i> mice and photoreceptor numbers were determined in central retinal sections at six defined positions two, four and six weeks after transplantation. Note that CNTF-treated eyes contained significantly more photoreceptors (filled bars) than the contralateral eyes with grafted control-NS cells (open bars) at all post-transplantation time points. Each bar represents the mean value (±SEM) from six retinas. ***, p<0.001 (Newman-Keuls post hoc test after the mixed two-way ANOVA).</p
    corecore