3 research outputs found

    Impact of comorbidity on patients with COVID-19 in India: A nationwide analysis

    Get PDF
    BackgroundThe emergence of coronavirus disease (COVID-19) as a global pandemic has resulted in the loss of many lives and a significant decline in global economic losses. Thus, for a large country like India, there is a need to comprehend the dynamics of COVID-19 in a clustered way.ObjectiveTo evaluate the clinical characteristics of patients with COVID-19 according to age, gender, and preexisting comorbidity. Patients with COVID-19 were categorized according to comorbidity, and the data over a 2-year period (1 January 2020 to 31 January 2022) were considered to analyze the impact of comorbidity on severe COVID-19 outcomes.MethodsFor different age/gender groups, the distribution of COVID-19 positive, hospitalized, and mortality cases was estimated. The impact of comorbidity was assessed by computing incidence rate (IR), odds ratio (OR), and proportion analysis.ResultsThe results indicated that COVID-19 caused an exponential growth in mortality. In patients over the age of 50, the mortality rate was found to be very high, ~80%. Moreover, based on the estimation of OR, it can be inferred that age and various preexisting comorbidities were found to be predictors of severe COVID-19 outcomes. The strongest risk factors for COVID-19 mortality were preexisting comorbidities like diabetes (OR: 2.39; 95% confidence interval (CI): 2.31–2.47; p < 0.0001), hypertension (OR: 2.31; 95% CI: 2.23–2.39; p < 0.0001), and heart disease (OR: 2.19; 95% CI: 2.08–2.30; p < 0.0001). The proportion of fatal cases among patients positive for COVID-19 increased with the number of comorbidities.ConclusionThis study concluded that elderly patients with preexisting comorbidities were at an increased risk of COVID-19 mortality. Patients in the elderly age group with underlying medical conditions are recommended for preventive medical care or medical resources and vaccination against COVID-19

    Dynamical influence of MJO phases on the onset of Indian monsoon

    No full text
    There is a need to understand the onset of monsoon dynamics as the date of onset of monsoon (DOM) is an important parameter in framing all the policy for the imminent season like crop choice, sowing schedule, disaster management, power distribution etc It is observed that the interannual variability of the DOM in India is about 7–8 days, making it more challenge to predict this at long lead. The MJO phases are linked with the different convection centres and hence, influences the global circulation process and the rainfall. In this paper the dynamical influence of the different phases of MJO are being quantified on DOM and its progress in continental India by using the multi-source atmospheric and oceanic parameters like wind structure, outgoing longwave radiation (OLR), sea surface temperature (SST). The linkage of the active and inactive phases of MJO along with the favourable conditions for DOM is obtained by using the pentad analysis of associated parameters in different clusters for both the wet and dry phases of MJO along with the strength for the period 1980–2018. Also the dynamics are studied for the early, normal and late onset years separately to understand the relation better. It is inferred that the wet (dry) phase leads to early (late) monsoon onset over Kerala (MOK) in India. To address the progress of monsoon the DOM in Rajasthan (MOR) is considered and the rainfall anomalies during MOK-MOR period are linked to the MJO phases. It is inferred that the wet MJO phase with negative OLR anomaly triggers the fast progress of monsoon over India. This understanding will surely help operational researchers and the NWP modellers for improving the methodologies for the advanced and accurate prediction of DOM

    Multiscale Forecasting of High-Impact Weather: Current Status and Future Challenges

    No full text
    International audienceAbstract Improving the forecasting and communication of weather hazards such as urban floods and extreme winds has been recognized by the World Meteorological Organization (WMO) as a priority for international weather research. The WMO has established a 10-yr High-Impact Weather Project (HIWeather) to address global challenges and accelerate progress on scientific and social solutions. In this review, key challenges in hazard forecasting are first illustrated and summarized via four examples of high-impact weather events. Following this, a synthesis of the requirements, current status, and future research in observations, multiscale data assimilation, multiscale ensemble forecasting, and multiscale coupled hazard modeling is provided
    corecore