5 research outputs found

    Halopseudomonas species: Cultivation and molecular genetic tools

    No full text
    Abstract The Halopseudomonas species, formerly classified as Pseudomonas pertucinogena lineage, form a unique phylogenetic branch within the Pseudomonads. Most strains have recently been isolated from challenging habitats including oil‐ or metal‐polluted sites, deep sea, and intertidal zones, suggesting innate resilience to physical and chemical stresses. Despite their comparably small genomes, these bacteria synthesise several biomolecules with biotechnological potential and a role in the degradation of anthropogenic pollutants has been suggested for some Halopseudomonads. Until now, these bacteria are not readily amenable to existing cultivation and cloning methods. We addressed these limitations by selecting four Halopseudomonas strains of particular interest, namely H. aestusnigri, H. bauzanensis, H. litoralis, and H. oceani to establish microbiological and molecular genetic methods. We found that C4‐C10 dicarboxylic acids serve as viable carbon sources in both complex and mineral salt cultivation media. We also developed plasmid DNA transfer protocols and assessed vectors with different origins of replication and promoters inducible with isopropyl‐ÎČ‐d‐thiogalactopyranoside, l‐arabinose, and salicylate. Furthermore, we have demonstrated the simultaneous genomic integration of expression cassettes into one and two attTn7 integration sites. Our results provide a valuable toolbox for constructing robust chassis strains and highlight the biotechnological potential of Halopseudomonas strains

    Light-mediated control of gene expression in the anoxygenic phototrophic bacterium Rhodobacter capsulatus using photocaged inducers

    No full text
    Photocaged inducer molecules, especially photocaged isopropyl-ÎČ-d-1-thiogalactopyranoside (cIPTG), are well-established optochemical tools for light-regulated gene expression and have been intensively applied in Escherichia coli and other bacteria including Corynebacterium glutamicum, Pseudomonas putida or Bacillus subtilis. In this study, we aimed to implement a light-mediated on-switch for target gene expression in the facultative anoxygenic phototroph Rhodobacter capsulatus by using different cIPTG variants under both phototrophic and non-phototrophic cultivation conditions. We could demonstrate that especially 6-nitropiperonyl-(NP)-cIPTG can be applied for light-mediated induction of target gene expression in this facultative phototrophic bacterium. Furthermore, we successfully applied the optochemical approach to induce the intrinsic carotenoid biosynthesis to showcase engineering of a cellular function. Photocaged IPTG thus represents a light-responsive tool, which offers various promising properties suitable for future applications in biology and biotechnology including automated multi-factorial control of cellular functions as well as optimization of production processes

    Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes

    No full text
    Since high-value bacterial secondary metabolites, including antibiotics, are often naturally produced in only low amounts, their efficient biosynthesis typically requires the transfer of entire metabolic pathways into suitable bacterial hosts like Pseudomonas putida. Stable maintenance and sufficient expression of heterologous pathway-encoding genes in host microbes, however, still remain key challenges. In this study, the 21 kb prodigiosin gene cluster from Serratia marcescens was used as a reporter to identify genomic sites in P. putida KT2440 especially suitable for maintenance and expression of pathway genes. After generation of a strain library by random Tn5 transposon-based chromosomal integration of the cluster, 50 strains exhibited strong prodigiosin production. Remarkably, chromosomal integration sites were exclusively identified in the seven rRNA-encoding rrn operons of P. putida. We could further demonstrate that prodigiosin production was mainly dependent on (i) the individual rrn operon where the gene cluster was inserted as well as (ii) the distance between the rrn promoter and the inserted prodigiosin biosynthetic genes. In addition, the recombinant strains showed high stability upon subculturing for many generations. Consequently, our findings demonstrate the general applicability of rDNA loci as chromosomal integration sites for gene cluster expression and recombinant pathway implementation in P. putida KT2440

    Biodegradation of poly(ester‐urethane) coatings by Halopseudomonas formosensis

    No full text
    Abstract Impranil¼ DLN‐SD is a poly(ester‐urethane) (PEU) that is widely used as coating material for textiles to fine‐tune and improve their properties. Since coatings increase the complexity of such plastic materials, they can pose a hindrance for sustainable end‐of‐life solutions of plastics using enzymes or microorganisms. In this study, we isolated Halopseudomonas formosensis FZJ due to its ability to grow on Impranil DLN‐SD and other PEUs as sole carbon sources. The isolated strain was exceptionally thermotolerant as it could degrade Impranil DLN‐SD at up to 50°C. We identified several putative extracellular hydrolases of which the polyester hydrolase Hfor_PE‐H showed substrate degradation of Impranil DLN‐SD and thus was purified and characterized in detail. Hfor_PE‐H showed moderate temperature stability (Tm = 53.9°C) and exhibited activity towards Impranil DLN‐SD as well as polyethylene terephthalate. Moreover, we revealed the enzymatic release of monomers from Impranil DLN‐SD by Hfor_PE‐H using GC‐ToF‐MS and could decipher the associated metabolic pathways in H. formosensis FZJ. Overall, this study provides detailed insights into the microbial and enzymatic degradation of PEU coatings, thereby deepening our understanding of microbial coating degradation in both contained and natural environments. Moreover, the study highlights the relevance of the genus Halopseudomonas and especially the novel isolate and its enzymes for future bio‐upcycling processes of coated plastic materials

    Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways

    No full text
    Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals
    corecore