53 research outputs found

    Mammary gland-derived nestin-positive cell populations can be isolated from human male and female donors

    Get PDF
    INTRODUCTION: Nestin-expressing cells isolated from different human tissues reveal self-renewal capacity and a multilineage differentiation potential. In particular, adult stem/progenitor cell populations from exocrine glands such as the pancreas, salivary gland and sweat gland are characterized by prominent nestin expression. Interestingly, human mammary gland histological examinations also demonstrated the existence of nestin-positive cells in the ductal compartments. Within the scope of our previous work we wonder whether an isolation of nestin-positive cell populations from human mammary gland biopsies is possible and what characteristics they have in vitro. Cell populations from both sexes were propagated and subjected to a comparison with other gland-derived cell populations. METHODS: Human mammary tissue biopsies were mechanically and enzymatically treated, and the isolated acini structures were observed with time-lapse microscopy to track adherently outgrowing cells. The proliferation potential of the cell population was assessed by performing growth curves. On the gene and protein levels we investigated the expression of stem cell markers as well as markers indicating multilineage differentiation. RESULTS: We succeeded in establishing proliferating cell populations from breast tissue biopsies of both sexes. Our results display several similarities to the glandular stem cell populations from other exocrine glands. Beside their proliferation capacity during in vitro culture, the obtained cell populations are characterized by their prominent nestin expression. The cells share surface proteins commonly expressed on adult stem cells. We demonstrated the expression of stem cell-related genes like Oct4, Sox2, KLF4 and Nanog, and confirmed multipotent differentiation capacity by detecting transcripts expressed in endodermal, mesodermal and ectodermal cell types. CONCLUSION: With this study we present an efficient procedure for isolation and propagation of nestin-positive stem cells obtained from male and female breast tissue, which is frequently available. The established multipotent cell populations could be easily expanded in vitro and thus hold promise for cell-based therapies and personalized medicine

    A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters

    Get PDF
    Automated microscopy is currently the only method to non-invasively and label-free observe complex multi-cellular processes, such as cell migration, cell cycle, and cell differentiation. Extracting biological information from a time-series of micrographs requires each cell to be recognized and followed through sequential microscopic snapshots. Although recent attempts to automatize this process resulted in ever improving cell detection rates, manual identification of identical cells is still the most reliable technique. However, its tedious and subjective nature prevented tracking from becoming a standardized tool for the investigation of cell cultures. Here, we present a novel method to accomplish automated cell tracking with a reliability comparable to manual tracking. Previously, automated cell tracking could not rival the reliability of manual tracking because, in contrast to the human way of solving this task, none of the algorithms had an independent quality control mechanism; they missed validation. Thus, instead of trying to improve the cell detection or tracking rates, we proceeded from the idea to automatically inspect the tracking results and accept only those of high trustworthiness, while rejecting all other results. This validation algorithm works independently of the quality of cell detection and tracking through a systematic search for tracking errors. It is based only on very general assumptions about the spatiotemporal contiguity of cell paths. While traditional tracking often aims to yield genealogic information about single cells, the natural outcome of a validated cell tracking algorithm turns out to be a set of complete, but often unconnected cell paths, i.e. records of cells from mitosis to mitosis. This is a consequence of the fact that the validation algorithm takes complete paths as the unit of rejection/acceptance. The resulting set of complete paths can be used to automatically extract important biological parameters with high reliability and statistical significance. These include the distribution of life/cycle times and cell areas, as well as of the symmetry of cell divisions and motion analyses. The new algorithm thus allows for the quantification and parameterization of cell culture with unprecedented accuracy. To evaluate our validation algorithm, two large reference data sets were manually created. These data sets comprise more than 320,000 unstained adult pancreatic stem cells from rat, including 2592 mitotic events. The reference data sets specify every cell position and shape, and assign each cell to the correct branch of its genealogic tree. We provide these reference data sets for free use by others as a benchmark for the future improvement of automated tracking methods

    Skin-derived stem cells for wound treatment using cultured epidermal autografts : clinical applications and challenges

    Get PDF
    The human skin fulfills important barrier, sensory, and immune functions—all of which contribute significantly to health and organism integrity. Widespread skin damage requires immediate treatment and coverage because massive skin loss fosters the invasion of pathogens, causes critical fluid loss, and may ultimately lead to death. Since the skin is a highly immunocompetent organ, autologous transplants are the only viable approach to permanently close a widespread skin wound. Despite the development of tissue-saving autologous transplantation techniques such as mesh and Meek grafts, treatment options for extensive skin damage remain severely limited. Yet, the skin is also a rich source of stem and progenitor cells. These cells promote wound healing under physiological conditions and are potential sources for tissue engineering approaches aiming to augment transplantable tissue by generating cultured epidermal autografts (CEAs). Here, we review autologous tissue engineering strategies as well as transplantation products based on skin-derived stem cells. We further provide an overview of clinical trial activities in the field and discuss relevant translational and clinical challenges associated with the use of these products

    A Novel Xenogeneic Co-Culture System to Examine Neuronal Differentiation Capability of Various Adult Human Stem Cells

    Get PDF
    Background: Targeted differentiation of stem cells is mainly achieved by the sequential administration of defined growth factors and cytokines, although these approaches are quite artificial, cost-intensive and time-consuming. We now present a simple xenogeneic rat brain co-culture system which supports neuronal differentiation of adult human stem cells under more in vivo-like conditions. Methods and Findings: This system was applied to well-characterized stem cell populations isolated from human skin, parotid gland and pancreas. In addition to general multi-lineage differentiation potential, these cells tend to differentiate spontaneously into neuronal cell types in vitro and are thus ideal candidates for the introduced co-culture system. Consequently, after two days of co-culture up to 12% of the cells showed neuronal morphology and expressed corresponding markers on the mRNA and protein level. Additionally, growth factors with the ability to induce neuronal different iation in stem cells could be found in the media supernatants of the co-cultures. Conclusions: The co-culture system described here is suitable for testing neuronal differentiation capability of numerous types of stem cells. Especially in the case of human cells, it may be of clinical relevance for future cell-based therapeutic applications

    Establishment of a Robust and Simple Corneal Organ Culture Model to Monitor Wound Healing

    No full text
    The use of in vitro systems to investigate the process of corneal wound healing offers the opportunity to reduce animal pain inflicted during in vivo experimentation. This study aimed to establish an easy-to-handle ex vivo organ culture model with porcine corneas for the evaluation and modulation of epithelial wound healing. Cultured free-floating cornea disks with a punch defect were observed by stereomicroscopic photo documentation. We analysed the effects of different cell culture media and investigated the impact of different wound sizes as well as the role of the limbus. Modulation of the wound healing process was carried out with the cytostatic agent Mitomycin C. The wound area calculation revealed that after three days over 90% of the lesion was healed. As analysed with TUNEL and lactate dehydrogenase assay, the culture conditions were cell protecting and preserved the viability of the corneal tissue. Wound healing rates differ dependent on the culture medium used. Mitomycin C hampered wound healing in a concentration-dependent manner. The porcine cornea ex vivo culture ideally mimics the in vivo situation and allows investigations of cellular behaviour in the course of wound healing. The effect of substances can be studied, as we have documented for a mitosis inhibitor. This model might aid in toxicological studies as well as in the evaluation of drug efficacy and could offer a platform for therapeutic approaches based on regenerative medicine

    An improved, standardised protocol for the isolation, enrichment and targeted neural differentiation of Nestin+ progenitors from adult human dermis

    No full text
    Human skin-derived Nestin+ cells serve as a convenient source for autologous, adult, pluripotent progenitor cells that offer new therapeutic possibilities in cell-based regenerative medicine. However, the isolation of human Nestin+ cells has tended to be of very low efficiency and to produce highly variable cell yields. Here we report a standardised protocol that facilitates the isolation and enrichment of Nestin+ progenitor cells from enzymatically digested adult human scalp dermis. The use of distinct media like Dulbecco's modified Eagle medium supplemented with foetal bovine serum or, alternatively, serum-free, supplemented neural stem cell medium greatly affected cell morphology, proliferation and differentiation (e.g. towards a neural versus mesenchymal phenotype). Finally, Nestin+ cells were isolated from a heterogeneous dermis-derived progenitor cell population, which proliferates within clones or floating microspheres under defined serum-free culture conditions. Supplementation of the medium with epidermal growth factor and basic fibroblast growth factor as well as coating with fibronectin allowed the highest enrichment level of Nestin+ progenitors and differentiation towards neural fate. These methodological advances should greatly facilitate the isolation, culture and targeted differentiation of primary, adult human scalp skin dermis-derived Nestin+ cells
    • …
    corecore