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The human skin fulfills important barrier, sensory, and immune functions—all of which contribute significantly to health and
organism integrity. Widespread skin damage requires immediate treatment and coverage because massive skin loss fosters the
invasion of pathogens, causes critical fluid loss, and may ultimately lead to death. Since the skin is a highly immunocompetent
organ, autologous transplants are the only viable approach to permanently close a widespread skin wound. Despite the
development of tissue-saving autologous transplantation techniques such as mesh and Meek grafts, treatment options for
extensive skin damage remain severely limited. Yet, the skin is also a rich source of stem and progenitor cells. These cells
promote wound healing under physiological conditions and are potential sources for tissue engineering approaches aiming to
augment transplantable tissue by generating cultured epidermal autografts (CEAs). Here, we review autologous tissue
engineering strategies as well as transplantation products based on skin-derived stem cells. We further provide an overview of
clinical trial activities in the field and discuss relevant translational and clinical challenges associated with the use of these products.

1. Introduction

The skin is among the largest human organs. In addition to
its important sensory function, it forms an effective barrier
that is pivotal for organism integrity. The skin shields the
organism from detrimental environmental influences or
infections and maintains a proper fluid balance. It is also
one of the most immune-active organs and hosts cellular ele-
ments of the innate and adaptive immune system that imme-
diately attack pathogens, should they manage to cross the
physical and chemical barrier provided by the epidermis.

Massive and widespread skin damage exceeds the regen-
erative capacity of the skin, which represents a significant
threat to the entire organism and requires timely and effec-
tive therapeutic intervention. Moreover, widespread skin
lesions often result from burns with thermal damage

additionally impairing skin regeneration. Finally, the regen-
erative capacity of the skin also declines with age, which
may necessitate interventions to support wound healing in
the elderly.

On the other hand, the skin exhibits a tremendous regen-
erative potential. Unique stem and progenitor cells reside in
the skin and its appendages (e.g., hair bulbs and sweat
glands) [1–4] and are sufficient to counter light and moderate
skin injury under physiological conditions. These cell popu-
lations have been of interest for regenerative medicine
approaches since the 1970s to overcome the limitations of
conventional skin grafting techniques. A number of thera-
peutic strategies have already been developed with the poten-
tial to thoroughly promote wound healing or replace
irreversibly lost skin areas. Consequently, these treatment
strategies have been advanced into the clinical arena. In this
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review, we summarize advances in using skin-derived stem
cells and products thereof and monitor the past and recent
clinical trial activities in the field. We also identify potential
challenges in translation and clinical use that need to be
addressed by future research to increase the benefit for
patients suffering from complicated skin wounds.

2. Conventional Grafting Techniques
and Allografts

2.1. Autologous Skin Transplantation. Autologous skin graft-
ing techniques can be used to cover large skin defects [5, 6].
For this, skin is taken from another body area of the same
patient and widened by cutting and stretching procedures
before wound covering (mesh orMeek graft transplantation).
Although indispensable for the treatment of severe and large
skin wounds, conventional autograft procedures come with
some critical limitations. First, autologous skin grafting
induces secondary wounds to the patient’s skin, which them-
selves are significant when dealing with larger lesions. Sec-
ond, massive skin injury resulting from burns, aggressive
acidic and alkaline chemicals, or physical stress can cause
lesions that are too large to be effectively treated. Third, local
blood supply can be impaired, preventing physiological skin
regeneration or engraftment. The latter is the case in chronic
or diabetic ulcers in the elderly.

2.2. Allografts. To overcome some of the problems associated
with autologous skin transplantation, skin from other human
beings (allografts) or even different species (xenografts) is
used. The risk of transmitting a communicable disease can-
not be entirely excluded in these approaches [7], but is min-
imal under modern good manufacturing practice (GMP)
conditions and in allografts built from well-characterized
cell lines. Premanufactured allografts are cryopreserved
and therefore available as off-the-shelf products. Allograft
cryopreservation prior to application results in similar clin-
ical outcome in comparison to fresh graft transplantation
onto skin ulcers [8]. However, there is no long-term
engraftment of major histocompatibility complex (MHC)
and blood type-mismatched allografts [9]. Allografts are
usually rejected after a mean of 14.5 days, showing signs
of acute cutaneous graft versus host disease in histological
investigations, but exceptions have also been reported [10].
Rather than engraftment, allografts likely work due to phys-
ical wound closure as well as stimulation of endogenous
skin regeneration.

Another approach to reduce the immunological response
is the use of cell-free biomaterials. One example is Allo-
derm®, an allogeneic product from a decellularized dermis
consisting of collagen fibers and glycosaminoglycans covered
by a silicon layer [11]. The product is preferentially applied to
deeper wounds. This artificial dermis does not only prevent
fluid loss and evaporation from the wound, but also induces
cellular proliferation and angiogenesis. These processes sus-
tainably support natural dermis regeneration [12]. Other
examples in widespread clinical use are cell-free, xenogenic
products such as Matriderm® and Integra® [13, 14].

Such biomaterials are also available in combination with
living cells, which support wound healing. Stratagraft® is a
product derived from an immortalized human keratinocyte
cell line, NIKS (normal immortal keratinocytes), forming a
top layer over a dermal fibroblast matrix. Another example
is Apligraf®, a collagen matrix containing keratinocytes and
fibroblasts of human neonatal foreskin, which shows high
proliferative capacity and may have a slightly better immu-
nologic profile. While Stratagraft is primarily employed to
treat burn wounds, Apligraf is used to treat leg and diabetic
foot ulcers. Epidermal allografts transplanted onto chronic
ulcers improve reepithelialization from wound edges and
skin appendages, augment granulation tissue, and foster
rebuilding of the basement membrane [8, 10, 15].

3. Skin-Derived Stem Cells

To overcome immunological problems and the scarce skin
availability, cells isolated from small skin biopsies can be
propagated in vitro and cultivated on biomaterials to cover
skin wounds. These materials are called cultured epidermal
autografts (CEAs). CEAs are for instance derived from
unpurified epidermal cell cultures that are thought to contain
epidermal stem cells.

3.1. Epidermal Stem Cells. The first in vitro cultivation of
human epidermal keratinocytes forming epidermis-like tis-
sue was reported in 1975 [16]. A mixed cell population
containing epidermal stem cells (epi-SCs) was applied in
the 1980s and 1990s to treat grade II and III burn victims.
Multiple CEAs with a cumulative surface area of up to
1.9m2 (Table 1) were obtained from few small healthy skin
biopsies [17]. Although cosmetic results obtained in these
early studies were still not optimal, wound healing was signif-
icantly improved. Compared to conventionally treated
patients, wound surface reduction was accelerated with
regenerated skin being more durable and stable [18–20].

Table 1: Comparison between epi-SC- and hf-SC-derived CEAs.

Aspect epi-SCs hf-SCs References

Reported donor age 0 to 59 years 63 to 91 years [22, 65, 80]

Cultivation period 3 to 4 weeks 4 weeks [25, 66, 81]

Material required Skin biopsy (3 cm2) 40 to 350 anagen hair follicles [28, 66, 82]

CEA surface
0.8 cm2 single-CEA surface or larger up to 1.9m2

in total can be generated for one patient
0.8 cm2 single-CEA surface [17, 22, 23]

Engraftment rate 70%, high variability 80 to 90% [18, 19, 82]
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CEAs are used in a number of clinical scenarios, but alter-
native application methods also exist. One approach is to
prepare a suspension of autologous epi-SC-derived keratino-
cytes. This suspension is sprayed onto large burn or chronic
wounds showing impaired healing [21]. The procedure is
sufficient as a stand-alone treatment of small- and moder-
ately sized, superficial wounds. It significantly improves
wound healing and reduces scar formation. The approach
is, however, not ideally suited for the treatment of large
and/or deeper wounds that usually require additional mesh
or Meek grafts. A logistically and cosmetically relevant
advantage of the spraying approach is that the wound
induced by the skin biopsy can itself be treated with the spray.

3.2. Hair Follicle-Derived Epithelial Stem Cells. Hair follicle-
derived epithelial stem cells (hf-SCs) are obtained from ana-
gen hair follicles. CEAs generated from these cells are used to
treat chronic wounds (predominantly venous ulcers) and
have already been applied for more than 20 years [22, 23].
A commercially available autologous product based on hf-
SCs called EpiDex® is in clinical use since 2004. About 4
weeks are required to cultivate numerous small EpiDex discs
of about 1 cm in diameter (Table 1). Interestingly, donor
(patient) age has no influence on cell proliferation [24] and
the overall efficacy of the approach. EpiDex is typically
applied to small and moderately sized chronic wounds exhi-
biting granulation but not reepithelialization. A long-term
study performed between 2004 and 2008 revealed that Epi-
Dex treatment induced complete wound healing in 3 out of
4 cases within a 9-month surveillance period [24].

4. Clinical Use of CEAs

The first transplantations of human CEAs in a clinical case
series were conducted in 1980 [25]. Two patients suffering
from partial and full-thickness burns on 80% and 40% of
their body surface area, respectively, were treated with split-
thickness skin grafts and epi-SC-derived CEAs. Direct com-
parison between the two transplantation methods did not
indicate differences in graft contraction or fragility. Although
there were differences compared to what is found in normal
skin, regenerating skin spreading in from the wound edges
resulted in similar tissue histology [25].

The durability of CEAs was further demonstrated by two
cases, in which children suffering burns continued to live
for at least 20 years after being transplanted with cultured
autologous equivalents in the early 1980s [26, 27]. Moreover,
a female burn victim experienced normal pregnancy despite
the previous abdominal transplantation of CEAs grown on
a fibrin matrix [28]. This demonstrates that CEAs do not
only provide tissue replacement and homeostasis, but can
also grow and adapt to mechanical stress, a decisive feature
for improving quality of life after transplantation, particu-
larly in young patients.

Based on the early successes in burn victims, a wide spec-
trum of possible applications other than burns was assessed
over the years. For instance, skin defects following pyoderma
gangrenosum [29], excision of congenital nevi [30], separa-
tion of conjoined twins resulting in large wounds on the left

side of the thoracic and abdominal walls [31] as well as
in vitiligo [32] and chronic leg ulcers [33] were treated
with CEAs. Furthermore, an autologous method for junc-
tional epidermolysis bullosa (JEB) treatment was reported
in 2006. A retroviral vector expressing LAMB3 cDNA was
used to manufacture genetically modified CEAs for a JEB
patient. Transplantation of these grafts resulted in adherent
and completely functional epidermis. No complications were
reported during the 1-year follow-up period [34]. Lenti- and
retroviral vectors as well as a ϕC31 integrase-based gene
correction method were also investigated for (recessive)
dystrophic epidermolysis bullosa [35–38]. Transfected epi-
SC-derived CEAs exhibited regular distribution of type VII
collagen as well as normal epidermal differentiation andmor-
phology for at least 12 months in a xenogeneic (human-
mouse) transplantation model [38]. A clinical study using
this retroviral vector is currently ongoing (NCT01263379).
In a very recent single-case clinical intervention, a pediatric
patient suffering from severe and life-threatening JEB was
treated with genetically corrected epidermal sheets derived
from a 4 cm2 autologous skin biopsy [39]. Outcome was
highly encouraging and the treatment concept has the poten-
tial to be widely applied.

Currently, there are only few commercial CEAs available
on the market. Among these are Epicel® (Vericel, USA),
ReCell® (Avita Medical, UK), and MySkin® (Regenerys,
UK), the latter being an unlicensed medicinal product. Epicel
is prepared as a sheet and MySkin as a single-cell suspension.
Both are produced under GMP conditions. ReCell is not a
cell product, but a device for preparing a cell suspension from
a single-skin biopsy directly in the clinic. The suspension is
sprayed on to the lesioned area.

4.1. Benefits of CEAs. The main advantage of CEAs compared
to conventional skin autografts for the treatment of compli-
cated or chronic wounds is that it does not require a second
skin wound, which itself can be prone to complications such
as pain, infection, retarded healing, and scar formation [40].
For this purpose, the scalp is an advantageous skin source as
it contains abundant hair follicles (leading to better epitheli-
alization) and any potential scars can be covered relatively
easily. The biopsy process is well tolerated and avoids larger
secondary wounds [38]. Epi-SCs are usually obtained via skin
biopsy under local anesthesia, whereas hf-SCs are acquired
by hair follicle plucking without the need for anesthesia.

After grafting, patients need to be immobilized only
shortly, if at all [23]. One reason for this is that CEAs lead
to slightly thinner but more elastic epidermis formation.
Moreover, application of CEAs reduces wound contraction
as compared to conventional approaches, and hypertrophic
scar formation is less frequent [41]. Wounds display only
minimal contraction, but maintain excellent tissue flexibility
when treated with epi-SCs cultivated in fibrinogen-derived
fibrin glue, made of fibrinogen, fibronectin, and factor XIII.
Hence, this approach is particularly feasible for areas under
intensive and/or complex mechanical stress [28] such as the
eyelid, fingers, or toes. Furthermore, epi-SCs cultivated in
the fibrinogen matrix provided by the glue form a stable cell
layer, which is easy to handle during transplantation and
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shows excellent adhesion to thewound surface [42]. The com-
bination with allografts is also possible, as the top silicon layer
of Alloderm can be removed and replaced by a CEA [43].

4.2. Overview of Clinical Trial Activities. To achieve an
overview on recent activities in the application of CEAs,
we performed a literature and database search on “http://
pubmed.gov/” and “http://clinicaltrials.gov/”. Search terms
are provided in Supplementary Table 1. Our search revealed
155 clinical trials and single-case reports being performed
and published between 1981 and 2016. Skin-derived stem
cells and related products were used in both clinical trials
and single-case treatments (Figure 1). Early clinical activi-
ties reported in the 1980s and 1990s were primarily single-
case reports. Phase I (safety) studies started to emerge around
1990. Studies including secondary or primary efficacy end-
points (phases II to IV) were conducted since 2005, indicat-
ing the step-wise development and progression of tested
approaches and products.

Of note, new phase I clinical trials have not been
launched since 2013, and a considerable proportion of clini-
cal studies were not completed as planned. In particular, only
12 out of 40 studies (30%) listed on “http://clinicaltrials.gov/”
have been completed as originally intended. Another 13
(32.5%) studies are still active, with 11 studies (27.5%) cur-
rently recruiting patients. A total number of 15 studies
(37.5%) were terminated, withdrawn, or have an unknown
status. This means that at least about one-third of all studies
were not performed as planned. Moreover, some of the
completed studies ended without recruiting the prespecified
patient numbers; hence, it is unclear whether the remain-
ing 11 studies currently enrolling patients can be completed
as planned.

The shortage of studies in the last years may indicate the
potential challenges hampering clinical implementation of
stemcell-based skin regeneration approaches. In the following
paragraphs, we will highlight unmet research needs reflecting
such challenges in skin wound treatment using CEAs.

5. Unmet Research Needs and Challenges

5.1. Preclinical Research. Results from in vivo models can
usually not be completely transferred to the clinical situation
in experimental dermatology and wound healing. This is par-
tially due to interspecies differences. Compared to murine
skin, which represents the most popular in vivo model in
experimental dermatology, for instance, humans have thicker
epidermal and dermal layers containing more cells. Further-
more, human skin contains fewer but larger hair follicles
while the interfollicular epidermis is wider-spaced [44, 45].
Human skin also exhibits rete ridges and a number of basic
immune system differences [44–46]. For example, surface
proteins of human and mouse hf-SCs are not congruent [47].

Skin contraction is an important feature in rodent wound
healing, but is not observed in humans and thus may lead to
an overestimation of treatment effects as compared to human
patients [48]. A number of measures have been developed to
counter these effects in rodent models, including the use of
chambers or polypropylene rings and tetanized meshes that

are transplanted into the skin defect to impair wound
contraction [49–51]. Suturing the wound edges to underlying
tissue is also performed to stabilize the defect [52]. Although
these techniques are effective in preventing skin contraction
in rodents, they interfere with the wound healing process
and therefore cannot fully compensate for interspecies biases
in preclinical in vivo wound healing studies. One option is to
use large animal models for confirmative studies in the field.
Pig skin is more similar to human skin and porcine models
may provide valuable advantages in translational research
[53]. However, the overall number of large animal studies
on wound healing, even when including neighboring areas
of skin regeneration research, is limited to only a few key
publications [54–56]. This may partially be due to the overall
higher costs and efforts of large animal research [57]. Never-
theless, the use of more advanced in vivo or, alternatively,
ex vivo wound healing models more adequately representing
human skin pathophysiology is encouraged.

5.2. CEA Production and Treatment Costs. One of the major
disadvantages of CEA is its relatively long production time of
3 to 4 weeks (Table 1), which is problematic when treating
large-sized and complicated skin wounds. To solve this prob-
lem, a two-step wound treatment approach can be applied.
Initially, an allograft is transplanted for wound coverage as
an intermediate outer barrier, gaining the required time for
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Figure 1: Number and type of clinical trials for stem cell-based skin
regeneration since 1980. Single-case studies or small series of single
cases were the main clinical activities reported before 1989.
Subsequently, the number of phase I trials (safety) increased,
reaching its first peak in the mid-1990s, followed by phase II
studies (safety and secondary efficacy endpoints) since the early
2000s. Large, late-stage clinical phase III (efficacy) and phase IV
(surveillance of products on market) studies were reported since
2005, which was accompanied by a drop in single-case reports.
Remarkably, no additional phase I clinical trial has been launched
since 2013. Only studies reported in http://pubmed.com and/or
listed on http://clinicaltrials.gov were included in this analysis. The
search was restricted to studies reported between 1981 and 2016.
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the generation of patient-specific CEA autografts, which are
subsequently transplanted.

The relatively high costs associated with the use of CEAs
present another challenge preventing widespread applica-
tion. In the late 1990s, treating 1% of the surface area of the
body after burns was estimated to cost US$600 for CEAs
cultured on fibrin and US$1350 for autografts cultured on
special plastics [58], and costs may have further increased
since then. The cost per square centimeter with definitive
engraftment and wound closure in children was calculated
to be around US$6520. A comparable treatment in adults is
even more expensive (US$13,000), with a reported definitive
engraftment rate of just 4.6%, questioning the cost-
effectiveness of such treatments in adults [59]. Daily care
expenses for a burn victim treated with an epidermal auto-
graft amount to US$4500, clearly exceeding the costs of a
conventional treatment (US$3500) [59]. High treatment
costs, in part being caused by the indispensable, but labor-
intensive and expensive manual GMP production, are there-
fore a relevant aspect at least partially explaining why stem
cell-derived CEAs are not yet routinely and widely applied.
Manual GMP production gives a relatively small product
output [28]. The overall high production costs can only be
covered if there is a high and continuous request for CEAs,
but the demand often remains behind expectations. This
may explain frequently observed bankruptcy in skin regener-
ation companies [60]. Step-wise implementation of automa-
tion technology into the production chain may help to lower
overall production costs. An alternative would be the utiliza-
tion of simplified, on-site cell isolation procedures from
autologous skin or subdermal fat tissue, but it needs to be
shown that the therapeutic outcome in the clinics compares
to the promising preclinical data [61] and results obtained
by CEAs currently in use.

On the other hand, a cost-effectiveness study in children
with massive burns, conducted in the late 1990s, revealed that
burn sites treated with cultured grafts show less extensive
scar formation compared to those treated with mesh grafts
[62]. This may warrant the treatment particularly in younger
patients, even though treatment with CEAs is associated with
longer hospital stays. In addition, patients treated with CEAs
had to undergo more reconstructive procedures during the
first two years after treatment [62]. Although good clinical
experience was made [63], a recent and detailed cost calcula-
tion for EpiDex in the treatment of leg ulcers still reported
significant treatment costs. However, the direct comparison
of EpiDex and split-thickness skin grafting for a single
average treatment resulted in a better cost-effectiveness in
favor of EpiDex. The price for one EpiDex disc with a
diameter of 1 cm amounts to US$480 and, depending on
the wound surface area, between 6 and 12 discs are required
per treatment [24].

Nevertheless, Epidex disappeared from the market after
the final supplier, Euroderm, went bankrupt in 2014. The
original manufacturer, Modex Therapeutics, fused with
IsoTis, a company from the Netherlands in 2002. The wound
care portfolio was sold to DFB Pharmaceuticals (USA) one
year later. However, there are no wound care products on
the official DFB pharmaceuticals webpage as of 2017.

5.3. Challenges and Complications in Clinical Use. Frequent
complications in burn patients after epidermal autograft
treatment comprise high failure rates, abundant scarring,
and fragile skin coverage [64]. Clinically, fragile skin cover-
age manifests in blistering and may be caused by a delay in
dermoepidermal junction formation [59]. However, the rate
of major complications is similar between patients treated
with CEAs or conventional grafting techniques [59].

A major and thus far unsolved problem is the variable
engraftment rate. Engraftment can be complicated by
wound infection [25, 42, 65] and depends on size and depth
of the wound. Age may also affect the engraftment rate, with
some studies reporting younger patients showing higher
engraftment rates [65, 66]. Treated wounds require careful
primary and secondary wound coverage to prevent graft dis-
placement or damage. Moreover, CEAs can show signs of
hyperkeratosis [65].

5.3.1. Infections. Concurrent infections were speculated to
be a main reason for graft failure since the first applica-
tion of CEAs [25]. Indeed, wound infection was the most
common adverse reaction in a trial assessing the commer-
cially available product EpiDex for ulcers treatment [24].
These infections were so far treated with systemic antibiotics
or topical antimicrobials and antiseptics (for details see
Drug Interactions).

A successfully treated infection does not impair subse-
quent epithelialization [67], but some bacterial species cause
complications or even graft failure requiring regrafting. For
instance, Pseudomonas aeruginosa destroys split-thickness
skin grafts as well as epidermal autografts [30, 68]. Similarly,
Staphylococcus haemolyticus induces graft destruction and
concurrent bleeding at the treatment location, which in some
cases may even lead to death [28].

Moreover, graft failure can also be caused by the “melt-
ing graft-wound syndrome.” This syndrome is character-
ized by increasing loss of epithelium from a healed burn
wound, a formerly well-taken graft or donor site, lack of
signs of systemic infection, and absence of inflammation
or cellulitis of the surrounding skin [69]. Streptococcus spe-
cies may be responsible for epithelial cell loss, but cases
without bacterial manifestation have also been reported
[63]. Further investigation of this phenomenon is therefore
needed [70].

A carefully prepared wound bed and effective infection
control are important prerequisites for proper engraftment
[58], reflected in the application notes of commercially avail-
able products. For instance, Apligraf must not be used on
infected ulcers [71]. One of the causes making CEAs vulner-
able for infections is inferior perfusion of the graft. Hence,
strategies enhancing vascularization and augmenting supply
as well as immunologic defense capabilities in the wound
area upon transplantation need to be developed [49].

5.3.2. Drug Interactions. The potential interaction between
drugs commonly applied to patients with skin deficits and
grafted material is clinically relevant. As reviewed above,
infections are a common problem in CEA application and
can damage or destroy the graft.
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Keratinocytes in the upper graft layers are the most
important cell population for graft functionality. These cells
shield underlying tissue from environmental influences.
Hence, several topical antimicrobial substances used to fight
common infections in patients have been tested on cultured
keratinocytes to assess potential toxicity on transplanted
grafts. Aminoglycosides, macrolides/lincosamides, glycopep-
tides, and polypeptides exert cytotoxic effects on keratino-
cytes, with cytotoxicity increasing in the listed order. In
addition, nonsynthetic antibiotic substances are less cyto-
toxic than synthetic or antifungal substances [72].

Table 2 summarizes the main results of toxicity studies
using keratinocytes. The least toxic antibiotics with respect
to clinically applied dosages can be ranked as follows
(increasing order of toxicity): neomycin, clindamycin, framy-
cetin, erythromycin, and gentamycin. These substances are
therefore recommended for use with epidermal grafts includ-
ing CEAs. Toxicity of topically applicable antiseptics is (in
that order, highest toxicity first) silver sulfadiazine, silver
nitrate solution, cerium-silver-sulfadiazine, and silver nitrate
plus chlorhexidine.

An interesting point of ongoing discussion is the systemic
intake of topical agents and related side effects. This may be
relevant when antibiotics are applied to large body surface
areas, for instance, after severe burn injury. Only a few inves-
tigations have addressed this problem so far. For example,
the gentamycin concentration in the blood after topical
application on full-thickness wounds was clearly below the
recommended maximum level in a pig study, reducing safety
concerns of topical application on moderately sized skin
wounds [73].

5.3.3. Ulceration and Malignant Degeneration. Treatment
with CEAs can also lead to more severe complications in sin-
gle cases. For instance, several secondary lesions and ulcera-
tions of unknown origin were observed in a burn patient
following extensive epi-SC-derived autograft transplantation.
Even an invasive squamous cell carcinoma representing a

potential malignant transformation was observed 13.5 years
after the initial treatment, followed by another seven carcino-
mas over a time period of 10 years [74, 75]. The use of cholera
toxin or isoproterenol during the in vitro cultivation of epi-
SCs may be one reason for this transformation. It can, how-
ever, not be concluded that carcinoma induction is an
adverse event that can solely be traced back to the cultivation
and transplantation of CEAs, since malignant transforma-
tions can also emerge from burn scars over time [74–76].
These observations illustrate the necessity for continuous
and thorough follow-up of transplant patients [77].

5.3.4. Cosmetic Aspects. All currently available grafts fail to
regenerate skin appendices such as sweat or sebaceous
glands and hair. Particularly, lack of the latter can lead to
suboptimal cosmetic results even if wound healing was suffi-
cient. A single case was reported of a large (10× 8 cm) cranial
full-thickness burn wound treated with a tissue-engineered
dermal template [67]. Hair follicles were micrografted into
the template and, being a stem cell source, contributed to
complete reepithelialization within just 37 days. However,
only very minor regrowth of hair was observed one year
after treatment.

Very recent preclinical studies reported the possibility to
generate fully functional hair follicles by stem cell manipula-
tion [78]. Similar results were reported for protocols using
induced pluripotent stem cells [79]. Such techniques may
in the future be used to promote hair regrowth on trans-
planted skin, but require further refinement for application
in patients.

6. Summary

Autologous and allogeneic skin grafts cultured from skin-
derived stem cells can efficiently support wound healing
and are a valuable addition to conventional skin grafting
approaches. The combination with biomaterials can augment
stability and functionality of the transplants. A number of

Table 2: Experiences with drug interactions on skin cells.

Chemical name Brand name Toxicity References

Fusidic acid, tetracycline,
virginiamycin

Diverse High toxicities at clinically applied doses [72]

Gentamycin Diverse

Favorable safety profile at low concentrations

[73, 83]Impaired cell migration and proliferation at higher concentrations
(0.1 to 1.0mg/mL), thus the clinically applied dose in topical
preparations (about 0.1% or 1mg/g) may impair cell function

Mafenide Sulfamylon®
Cytotoxic even at lower local concentrations, therefore not

suitable as a topical agent
[83]

Phenoxyethanol Diverse Promising alternative to antiseptic solutions [72]

Polymyxin B Diverse Dose-dependent detrimental effects [83]

Polymyxin B sulfate in
combination with bacitracin

Polysporin®
Impaired proliferation at higher concentrations with the

main effect being mediated by polymyxin B sulfate
[83]

Polymyxin B sulfate in combination
with neomycin sulfate

Neosporin®
Much more favorable safety profile, containing far less

polymyxin B but exerting excellent antimicrobiotic effects,
discussed as a well-suited topical antibiotic

[83]

Povidone-iodine Diverse Toxicity depends on the presence of serum (higher without) [72]
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successful clinical trials have been completed, and bioengi-
neered skin grafts are available as therapeutic products.
Nevertheless, the use of these products is still limited. First,
they are still expensive to manufacture, limiting widespread
applicability. Automation of graft production and applica-
tion may help to overcome this limitation. Second, treatment
results are often limited since skin appendices (glands, hair)
are usually not regenerated. Advanced stem cell and tissue
engineering approaches may provide solutions for this in
the future. Third, results of in vivo (rodent) studies are only
partially comparable to the patient situation, warranting the
development of novel models including large animal experi-
ments to achieve better comparability. Moreover, potential
interactions between topical and systemic drugs and the
stem cell-derived graft should be investigated in more
detail. Altogether, this will augment the therapeutic value
and clinical applicability of skin grafts.

Conflicts of Interest

All authors declare that there are no conflicts of interest.
Only intramural funds were used for this work.

Authors’ Contributions

Inga Brockmann and Juliet Ehrenpfordt contributed equally
to this work.

Supplementary Materials

Supplementary Table 1: search terms included in the trial
search. It contains all search terms and combinations that
have been applied for the online research regarding relevant
publications of clinical applications in the field. Online
research was performed at the “http://clinicaltrials.gov/”
and “http://pubmed.com/” data bases. Clinical studies and
case reports/series have been included. (Supplementary
Materials)

References

[1] P. H. Jones, S. Harper, and F. M. Watt, “Stem cell patterning
and fate in human epidermis,” Cell, vol. 80, no. 1, pp. 83–93,
1995.

[2] M. Ohyama, A. Terunuma, C. L. Tock et al., “Characterization
and isolation of stem cell-enriched human hair follicle bulge
cells,” Journal of Clinical Investigation, vol. 116, no. 1,
pp. 249–260, 2006.

[3] S. Tiede, J. E. Kloepper, E. Bodò, S. Tiwari, C. Kruse, and
R. Paus, “Hair follicle stem cells: walking the maze,” European
Journal of Cell Biology, vol. 86, no. 7, pp. 355–376, 2006.

[4] S. Nagel, F. Rohr, C. Weber et al., “Multipotent nestin-positive
stem cells reside in the stroma of human eccrine and apocrine
sweat glands and can be propagated robustly in vitro,” PLoS
One, vol. 8, no. 10, article e78365, 2013.

[5] J. Henderson, R. Arya, and P. Gillespie, “Skin graft meshing,
over-meshing and cross-meshing,” International Journal of
Surgery, vol. 10, no. 9, pp. 547–550, 2012.

[6] S. Menon, Z. Li, J. G. Harvey, and A. J. Holland, “The use of the
Meek technique in conjunction with cultured epithelial

autograft in the management of major paediatric burns,”
Burns, vol. 39, no. 4, pp. 674–679, 2013.

[7] N. O. Ojeh, J. D. Frame, and H. A. Navsaria, “In vitro charac-
terization of an artificial dermal scaffold,” Tissue Engineering,
vol. 7, no. 4, pp. 457–472, 2001.

[8] R. G. Teepe, E. J. Koebrugge, M. Ponec, and B. J. Vermeer,
“Fresh versus cryopreserved cultured allografts for the treat-
ment of chronic skin ulcers,” British Journal of Dermatology,
vol. 122, no. 1, pp. 81–89, 1990.

[9] J. Auböck, E. Irschick, N. Romani et al., “Rejection, after a
slightly prolonged survival time, of Langerhans cell-free allo-
geneic cultured epidermis used for wound coverage in
humans,” Transplantation, vol. 45, no. 4, pp. 730–736, 1988.

[10] T. J. Phillips, J. Bhawan, I. M. Leigh, H. J. Baum, and B. A.
Gilchrest, “Cultured epidermal autografts and allografts: a
study of differentiation and allograft survival,” Journal of the
American Academy of Dermatology, vol. 23, no. 2, pp. 189–
198, 1990.

[11] A. M. Munster, M. Smith-Meek, and A. Shalom, “Acellular
allograft dermal matrix: immediate or delayed epidermal cov-
erage?,” Burns, vol. 27, no. 2, pp. 150–153, 2001.

[12] D. Heimbach, A. Luterman, J. Burke et al., “Artificial dermis
for major burns: a multi-center randomized clinical trial,”
Annals of Surgery, vol. 208, no. 3, pp. 313–320, 1988.

[13] H. Ryssel, G. Germann, O. Kloeters, E. Gazyakan, and C. A.
Radu, “Dermal substitution with Matriderm® in burns on the
dorsum of the hand,” Burns, vol. 36, no. 8, pp. 1248–1253,
2010.

[14] V. R. Driver, L. A. Lavery, A. M. Reyzelman et al., “A clinical
trial of Integra Template for diabetic foot ulcer treatment,”
Wound Repair and Regeneration, vol. 23, no. 6, pp. 891–900,
2015.

[15] V. Gielen, M. Faure, G. Mauduit, and J. Thivolet, “Progressive
replacement of human cultured epithelial allografts by recipi-
ent cells as evidenced by HLA class I antigens expression,”
Dermatologica, vol. 175, no. 4, pp. 166–170, 1987.

[16] J. G. Rheinwald and H. Green, “Seria cultivation of strains of
human epidemal keratinocytes: the formation keratinizin col-
onies from single cell is,” Cell, vol. 6, no. 3, pp. 331–343, 1975.

[17] C. B. Cuono, R. Langdon, N. Birchall, S. Barttelbort, and
J. McGuire, “Composite autologous-allogeneic skin replace-
ment: development and clinical application,” Plastic and
Reconstructive Surgery, vol. 80, no. 4, pp. 626–635, 1987.

[18] R. G. Teepe, M. Ponec, R. W. Kreis, and R. P. Hermans,
“Improved grafting method for treatment of burns with autol-
ogous cultured human epithelium,” The Lancet, vol. 327,
no. 8477, p. 385, 1986.

[19] J. A. Clarke, A. M. Burt, A. Eldad, and B. A. Gusterson, “Cul-
tured skin for burn injury,” Lancet, vol. 2, no. 8510, p. 809,
1986.

[20] J. M. Hefton, M. R. Madden, J. L. Finkelstein, and G. T. Shires,
“Grafting of burn patients with allografts of cultured epider-
mal cells,” The Lancet, vol. 322, no. 8347, pp. 428–430, 1983.

[21] S. E. James, S. Booth, B. Dheansa et al., “Sprayed cultured
autologous keratinocytes used alone or in combination with
meshed autografts to accelerate wound closure in difficult-to-
heal burns patients,” Burns, vol. 36, no. 3, pp. e10–e20, 2010.

[22] A. Limat, D. Mauri, and T. Hunziker, “Successful treatment of
chronic leg ulcers with epidermal equivalents generated from
cultured autologous outer root sheath cells,” Journal of Investi-
gative Dermatology, vol. 107, no. 1, pp. 128–135, 1996.

7Stem Cells International

http://clinicaltrials.gov/
http://pubmed.com/
http://downloads.hindawi.com/journals/sci/2018/4623615.f1.pdf
http://downloads.hindawi.com/journals/sci/2018/4623615.f1.pdf


[23] A. Limat and T. Hunziker, “Use of epidermal equivalents
generated from follicular outer root sheath cells in vitro and
for autologous grafting of chronic wounds,” Cells, Tissues,
Organs, vol. 172, no. 2, pp. 79–85, 2002.

[24] N. Ortega-Zilic, T. Hunziker, S. Läuchli et al., “EpiDex® Swiss
field trial 2004–2008,” Dermatology, vol. 221, no. 4, pp. 365–
372, 2010.

[25] N. E. O’Connor, J. B. Mulliken, S. Bank-Schlegel, O. Kehinde,
and H. Green, “Grafting of burns with cultured epithelium
prepared from autologous epidermal cells,” The Lancet,
vol. 317, no. 8211, pp. 75–78, 1981.

[26] G. G. Gallico 3rd, N. E. O'Connor, C. C. Compton, O. Kehinde,
and H. Green, “Permanent coverage of large burn wounds
with autologous cultured human epithelium,” The New
England Journal of Medicine, vol. 311, no. 7, pp. 448–451,
1984.

[27] H. Green, “The birth of therapy with cultured cells,” BioEssays,
vol. 30, no. 9, pp. 897–903, 2008.

[28] V. Ronfard, J. M. Rives, Y. Neveux, H. Carsin, and
Y. Barrandon, “Long-term regeneration of human epidermis
on third degree burns transplanted with autologous cultured
epithelium grown on a fibrin matrix,” Transplantation,
vol. 70, no. 11, pp. 1588–1598, 2000.

[29] S. J. Dean, S. Nieber, andW. L. Hickerson, “The use of cultured
epithelial autograft in a patient with idiopathic pyoderma
gangrenosum,” Annals of Plastic Surgery, vol. 26, no. 2,
pp. 194-195, 1991.

[30] G. G. Gallico 3rd, N. E. O'Connor, C. C. Compton, J. P.
Remensnyder, O. Kehinde, and H. Green, “Cultured epithelial
autografts for giant congenital nevi,” Plastic and Reconstructive
Surgery, vol. 84, no. 1, pp. 1–9, 1989.

[31] C. R. Higgins, H. Navsaria, M. Stringer, L. Spitz, and I. M.
Leigh, “Use of two stage keratinocyte-dermal grafting to treat
the separation site in conjoined twins,” Journal of the Royal
Society of Medicine, vol. 87, no. 2, pp. 108-109, 1994.

[32] L. Guerra, S. Capurro, F. Melchi et al., “Treatment of "stable"
vitiligo by Timedsurgery and transplantation of cultured epi-
dermal autografts,” Archives of Dermatology, vol. 136, no. 11,
pp. 1380–1389, 2000.

[33] I. M. Leigh and P. E. Purkis, “Culture grafted leg ulcers,” Clin-
ical and Experimental Dermatology, vol. 11, no. 6, pp. 650–652,
1986.

[34] F. Mavilio, G. Pellegrini, S. Ferrari et al., “Correction of junc-
tional epidermolysis bullosa by transplantation of genetically
modified epidermal stem cells,” Nature Medicine, vol. 12,
no. 12, pp. 1397–1402, 2006.

[35] M. Chen, N. Kasahara, D. R. Keene et al., “Restoration of type
VII collagen expression and function in dystrophic epidermo-
lysis bullosa,” Nature Genetics, vol. 32, no. 4, pp. 670–675,
2002.

[36] S. Ortiz-Urda, B. Thyagarajan, D. R. Keene et al., “Stable non-
viral genetic correction of inherited human skin disease,”
Nature Medicine, vol. 8, no. 10, pp. 1166–1170, 2002.

[37] Y. Gache, C. Baldeschi, M. Del Rio et al., “Construction of skin
equivalents for gene therapy of recessive dystrophic epidermo-
lysis bullosa,” Human Gene Therapy, vol. 15, no. 10, pp. 921–
933, 2004.

[38] Z. Siprashvili, N. T. Nguyen, M. Y. Bezchinsky, M. P. Marinko-
vich, A. T. Lane, and P. A. Khavari, “Long-term type VII colla-
gen restoration to human epidermolysis bullosa skin tissue,”
Human Gene Therapy, vol. 21, no. 10, pp. 1299–1310, 2010.

[39] T. Hirsch, T. Rothoeft, N. Teig et al., “Regeneration of the
entire human epidermis using transgenic stem cells,” Nature,
vol. 551, no. 7680, pp. 327–332, 2017.

[40] M. Kanapathy, N. Hachach-Haram, N. Bystrzonowski,
K. Harding, A. Mosahebi, and T. Richards, “Epidermal graft-
ing versus split-thickness skin grafting for wound healing
(EPIGRAAFT): study protocol for a randomised controlled
trial,” Trials, vol. 17, no. 1, p. 245, 2016.

[41] A. Wynn, “The Sakharovs and IPPNW,” The Lancet, vol. 323,
no. 8392, p. 1473, 1984.

[42] H. W. Kaiser, G. B. Stark, J. Kopp, A. Balcerkiewicz, G. Spilker,
and H. W. Kreysel, “Cultured autologous keratinocytes in
fibrin glue suspension, exclusively and combined with STS-
allograft (preliminary clinical and histological report of a
new technique),” Burns, vol. 20, no. 1, pp. 23–29, 1994.

[43] M. Kremer, E. Lang, and A. C. Berger, “Evaluation of dermal-
epidermal skin equivalents ('composite-skin') of human kera-
tinocytes in a collagen-glycosaminoglycan matrix (Integra™
artificial skin),” British Journal of Plastic Surgery, vol. 53,
no. 6, pp. 459–465, 2000.

[44] M. Pasparakis, I. Haase, and F. O. Nestle, “Mechanisms regu-
lating skin immunity and inflammation,” Nature Reviews
Immunology, vol. 14, no. 5, pp. 289–301, 2014.

[45] G. Cotsarelis, “Gene expression profiling gets to the root of
human hair follicle stem cells,” The Journal of Clinical Investi-
gation, vol. 116, no. 1, pp. 19–22, 2006.

[46] R. Diehl, F. Ferrara, C. Müller et al., “Immunosuppression for
in vivo research: state-of-the-art protocols and experimental
approaches,” Cellular & Molecular Immunology, vol. 14,
no. 2, pp. 146–179, 2017.

[47] T. S. Purba, I. S. Haslam, E. Poblet et al., “Human epithelial
hair follicle stem cells and their progeny: current state of
knowledge, the widening gap in translational research and
future challenges,” BioEssays, vol. 36, no. 5, pp. 513–525, 2014.

[48] S. Banks-Schlegel and H. Green, “Formation of epidermis by
serially cultivated human epidermal cells transplanted as an
epithelium to athymic mice,” Transplantation, vol. 29, no. 4,
pp. 308–313, 1980.

[49] S. Danner, M. Kremer, A. E. Petschnik et al., “The use of
human sweat gland–derived stem cells for enhancing vascular-
ization during dermal regeneration,” Journal of Investigative
Dermatology, vol. 132, no. 6, pp. 1707–1716, 2012.

[50] N. E. Fusenig, D. Breitkreutz, R. T. Dzarlieva, P. Boukamp,
A. Bohnert, and W. Tilgen, “Growth and differentiation char-
acteristics of transformed keratinocytes from mouse and
human skin in vitro and in vivo,” Journal of Investigative Der-
matology, vol. 81, no. 1, Supplement, pp. S168–S175, 1983.

[51] L. Pontiggia, T. Biedermann, M. Meuli et al., “Markers to eval-
uate the quality and self-renewing potential of engineered
human skin substitutes in vitro and after transplantation,”
Journal of Investigative Dermatology, vol. 129, no. 2, pp. 480–
490, 2009.

[52] J. R. Sharpe and Y. Martin, “Strategies demonstrating efficacy
in reducing wound contraction in vivo,” Advances in Wound
Care, vol. 2, no. 4, pp. 167–175, 2013.

[53] E. Middelkoop, A. J. van den Bogaerdt, E. N. Lamme, M. J.
Hoekstra, K. Brandsma, and M. M. Ulrich, “Porcine wound
models for skin substitution and burn treatment,” Biomate-
rials, vol. 25, no. 9, pp. 1559–1567, 2004.

[54] E. Braziulis, T. Biedermann, F. Hartmann-Fritsch et al.,
“Skingineering I: engineering porcine dermo-epidermal skin

8 Stem Cells International



analogues for autologous transplantation in a large animal
model,” Pediatric Surgery International, vol. 27, no. 3,
pp. 241–247, 2011.

[55] C. Schiestl, T. Biedermann, E. Braziulis et al., “Skingineering II:
transplantation of large-scale laboratory-grown skin analogues
in a new pig model,” Pediatric Surgery International, vol. 27,
no. 3, pp. 249–254, 2011.

[56] X. Cai, Y. L. Cao, L. Cui, W. Liu, and W. X. Guan, “Use of
autologous tissue engineered skin to treat porcine full-
thickness skin defects,” Chinese Journal of Traumatology,
vol. 5, no. 8, pp. 269–276, 2005.

[57] J. Boltze, A. Förschler, B. Nitzsche et al., “Permanent middle
cerebral artery occlusion in sheep: a novel large animal model
of focal cerebral ischemia,” Journal of Cerebral Blood Flow &
Metabolism, vol. 12, no. 28, pp. 1951–1964, 2008.

[58] G. Pellegrini, R. Ranno, G. Stracuzzi et al., “The control of epi-
dermal stem cells (holoclones) in the treatment of massive full-
thickness burns with autologous keratinocytes cultured on
fibrin,” Transplantation, vol. 68, no. 6, pp. 868–879, 1999.

[59] M. Meuli and M. Raghunath, “Tops and flops using cultured
epithelial autografts in children,” Pediatric Surgery Interna-
tional, vol. 12, no. 7, pp. 471–477, 1997.

[60] A. Bouchie, “Tissue engineering firms go under,” Nature Bio-
technology, vol. 20, no. 12, pp. 1178-1179, 2002.

[61] P. Foubert, S. Barillas, A. D. Gonzalez et al., “Uncultured
adipose-derived regenerative cells (ADRCs) seeded in collagen
scaffold improves dermal regeneration, enhancing early vascu-
larization and structural organization following thermal
burns,” Burns, vol. 41, no. 7, pp. 1504–1516, 2015.

[62] J. P. Barret, S. E. Wolf, M. H. Desai, and D. N. Herndon,
“Cost-efficacy of cultured epidermal autografts in massive
pediatric burns,” Annals of Surgery, vol. 231, no. 6, pp. 869–
876, 2000.

[63] R. Renner, W. Harth, and J. C. Simon, “Transplantation of
chronic wounds with epidermal sheets derived from autolo-
gous hair follicles—the Leipzig experience,” International
Wound Journal, vol. 6, no. 3, pp. 226–232, 2009.

[64] T. T. Nguyen, D. A. Gilpin, N. A. Meyer, and D. N. Herndon,
“Current treatment of severely burned patients,” Annals of
Surgery, vol. 233, no. 1, pp. 14–25, 1996.

[65] J. E. Paddle-Ledinek, D. G. Cruickshank, and J. P. Masterton,
“Skin replacement by cultured keratinocyte grafts: an Austra-
lian experience,” Burns, vol. 23, no. 3, pp. 204–211, 1997.

[66] H. Carsin, P. Ainaud, H. Le Bever et al., “Cultured epithelial
autografts in extensive burn coverage of severely traumatized
patients: a five year single-center experience with 30 patients,”
Burns, vol. 26, no. 4, pp. 379–387, 2000.

[67] H. A. Navsaria, N. O. Ojeh, N. Moiemen, M. A. Griffiths, and
J. D. Frame, “Reepithelialization of a full-thickness burn from
stem cells of hair follicles micrografted into a tissue-engineered
dermal template (Integra),” Plastic and Reconstructive Surgery,
vol. 113, no. 3, pp. 978–981, 2004.

[68] A. L. Moss, “Cultured epithelial autografts for giant congenital
nevi,” Plastic and Reconstructive Surgery, vol. 85, no. 4,
pp. 646-647, 1990.

[69] H. Matsumura, N. A. Meyer, R. Mann, and D. M. Heimbach,
“Melting graft-wound syndrome,” The Journal of Burn Care
& Rehabilitation, vol. 19, no. 4, pp. 292–295, 1998.

[70] N. Hodgins and S. A. Pape, “Management of melting graft
syndrome: a call for evidence,” Burns, vol. 41, no. 6,
pp. 1371-1372, 2015.

[71] L. Zaulyanov and R. S. Kirsner, “A review of a bi-layered living
cell treatment (Apligraf) in the treatment of venous leg ulcers
and diabetic foot ulcers,” Clinical Interventions in Aging, vol. 2,
no. 1, pp. 93–98, 2007.

[72] R. G. Teepe, E. J. Koebrugge, C. W. Löwik et al., “Cytotoxic
effects of topical antimicrobial and antiseptic agents on human
keratinocytes in vitro,” The Journal of Trauma: Injury, Infec-
tion, and Critical Care, vol. 35, no. 1, pp. 8–19, 1993.

[73] J. P. Junker, C. C. Lee, S. Samaan et al., “Topical delivery of
ultrahigh concentrations of gentamicin is highly effective in
reducing bacterial levels in infected porcine full-thickness
wounds,” Plastic and Reconstructive Surgery, vol. 135, no. 1,
pp. 151–159, 2015.

[74] C. Theopold, D. Hoeller, P. Velander, R. Demling, and
E. Eriksson, “Graft site malignancy following treatment of
full-thickness burn with cultured epidermal autograft,” Plastic
and Reconstructive Surgery, vol. 114, no. 5, pp. 1215–1219,
2004.

[75] M. Singh, K. Nuutlia, A. S. Chauhan, and E. Eriksson, “Inva-
sive squamous cell carcinoma in full-thickness burn wounds
after treatment with cultured epithelial autografts,” Plastic
and Reconstructive Surgery - Global Open, vol. 3, no. 7, article
e460, 2015.

[76] E. J. Bartle, J. H. Sun, X. W. Wang, and B. K. Schneider, “Can-
cers arising from burn scars: a literature review and report of
twenty-one cases,” The Journal of Burn Care & Rehabilitation,
vol. 11, no. 1, pp. 46–49, 1990.

[77] C. Theopold and E. Eriksson, “The need for aggressive follow-
up after cultured epidermal autograft–grafted full-thickness
burn,” Plastic and Reconstructive Surgery, vol. 117, no. 2,
p. 708, 2006.

[78] K. E. Toyoshima, K. Asakawa, N. Ishibashi et al., “Fully func-
tional hair follicle regeneration through the rearrangement of
stem cells and their niches,” Nature Communications, vol. 3,
p. 784, 2012.

[79] R. Takagi, J. Ishimaru, A. Sugawara et al., “Bioengineering a 3D
integumentary organ system from iPS cells using an in vivo
transplantation model,” Science Advances, vol. 2, no. 4, article
e1500887, 2016.

[80] A. K. Tausche, M. Skaria, L. Böhlen et al., “An autologous epi-
dermal equivalent tissue-engineered from follicular outer root
sheath keratinocytes is as effective as split-thickness skin auto-
graft in recalcitrant vascular leg ulcers,” Wound Repair and
Regeneration, vol. 11, no. 4, pp. 248–252, 2003.

[81] C. Cuono, R. Langdon, and J. McGuire, “Use of cultured epi-
dermal autografts and dermal allografts as skin replacement
after burn injury,” The Lancet, vol. 1, no. 8490, pp. 1123-
1124, 1986.

[82] V. Ronfard, H. Broly, V. Mitchell et al., “Use of human kerati-
nocytes cultured on fibrin glue in the treatment of burn
wounds,” Burns, vol. 17, no. 3, pp. 181–184, 1991.

[83] M. L. Cooper, S. T. Boyce, J. F. Hansbrough, T. J. Foreman, and
D. H. Frank, “Cytotoxicity to cultured human keratinocytes of
topical antimicrobial agents,” Journal of Surgical Research,
vol. 48, no. 3, pp. 190–195, 1990.

9Stem Cells International



Hindawi
www.hindawi.com

 International Journal of

Volume 2018

Zoology

Hindawi
www.hindawi.com Volume 2018

 Anatomy 
Research International

Peptides
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Journal of 
Parasitology Research

Genomics
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Neuroscience 
Journal

Hindawi
www.hindawi.com Volume 2018

BioMed 
Research International

Cell Biology
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Biochemistry 
Research International

Archaea
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Genetics 
Research International

Hindawi
www.hindawi.com Volume 2018

Advances in

Virolog y Stem Cells 
International

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Enzyme 
Research

Hindawi
www.hindawi.com Volume 2018

International Journal of

Microbiology
Hindawi
www.hindawi.com

Nucleic Acids
Journal of

Volume 2018

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijz/
https://www.hindawi.com/journals/ari/
https://www.hindawi.com/journals/ijpep/
https://www.hindawi.com/journals/jpr/
https://www.hindawi.com/journals/ijg/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/abi/
https://www.hindawi.com/journals/jmb/
https://www.hindawi.com/journals/neuroscience/
https://www.hindawi.com/journals/bmri/
https://www.hindawi.com/journals/ijcb/
https://www.hindawi.com/journals/bri/
https://www.hindawi.com/journals/archaea/
https://www.hindawi.com/journals/gri/
https://www.hindawi.com/journals/av/
https://www.hindawi.com/journals/sci/
https://www.hindawi.com/journals/er/
https://www.hindawi.com/journals/ijmicro/
https://www.hindawi.com/journals/jna/
https://www.hindawi.com/
https://www.hindawi.com/

