7 research outputs found

    Environmental impact assessment model for substitution of hazardous substances by using life cycle approach

    No full text
    Regulations that are indirectly driving the substitution of hazardous chemicals, such as the EU REACH regulation, necessitate improvements in chemical alternatives assessment frameworks. In those frameworks, life cycle thinking lacks some important aspects such as systematic and quantitative occupational safety methods and risks from intermediate chemicals that are not released to the environment under normal operating conditions. Concerns of companies about regulatory drivers regarding substances of very high concern often lead to inadequate evaluation of the baseline situation; an issue also overlooked by the frameworks. Moreover, life cycle assessment is optional for assessors with limited resources, such as small and medium enterprises. However, the success of substitution should not be evaluated without life cycle concerns. An environmental impact assessment model has been suggested to overcome these shortcomings of the chemical alternatives assessment frameworks. The model was applied to a case study of primed metal sheet production, where the company was driven to substitute reprotoxic 2-methoxypropanol used in their formulations. The results show that the proposed model is promising for solving the mentioned shortcomings, informing the assessor about substances of very high concern along the life cycle, and it has the potential to be further improved with the help of supporting software and databases. Particularly, in the occupational safety area that concerns risks of accidents at work, improvements to the EU occupational health database can drastically increase the accuracy of the assessments. Besides, the development of methodologies for the quantification of the impacts of reprotoxic, bioaccumulative and endocrine disruptor substances is necessary

    Strategies for sustainable and circular management of phosphorus in the baltic sea region: The holistic approach of the inPhos project

    No full text
    Despite the significant reduction of phosphorus (P) discharge in the Baltic Sea in the last decades, obtained through the implementation of some approaches within the Helsinki Convention, eutrophication is still considered the biggest problem for the Baltic Sea environment. Consequently, the reduction of P load is an urgent need to solve, but the complexity of both the environmental and legislative context of the area makes this process difficult (more than in the past). Eutrophication is an intricate issue requiring a proper framework of governance that is not easy to determine in the Baltic Sea Region where the needs of several different countries converge. To identify the most suitable strategy to reduce the eutrophication in the Baltic Sea, the InPhos project (no. 17022, 2018-2019, funded by the European Institute of Innovation & Technology (EIT) Raw Materials) adopted a holistic approach considering technical, political, economic, environmental and social aspects of P management. With the aims to raise awareness about the P challenge, foster the dialogue among all the stakeholders, and find solutions already developed in other countries (such as Germany and Switzerland) to be transferred in the Baltic Sea Region, the InPhos project consortium applied the methodology proposed in this paper, consisting of three main phases: (i) analysis of the available technologies to remove P from waste streams that contribute to eutrophication; (ii) analysis of the main streams involving P in Baltic Sea countries to highlight the potential of more sustainable and circular P management; (iii) study of the current context (e.g., already-existing initiatives and issues). This approach allowed us to identify four categories of recommendations and practical actions proposed to improve P management in the Baltic Sea region. During the project, the consortium mainly addressed social aspects. Following steps beyond the project will be more quantitative to determine the techno-economic feasibility of circular P management in selected demo cases in the region
    corecore