13 research outputs found

    Selective regulation of MAP kinases and Chemokine expression after ligation of ICAM-1 on human airway epithelial cells

    Get PDF
    Abstract Background Intercellular adhesion molecule 1 (ICAM-1) is an immunoglobulin-like cell adhesion molecule expressed on the surface of multiple cell types, including airway epithelial cells. It has been documented that cross-linking ICAM-1 on the surface of leukocytes results in changes in cellular function through outside-inside signaling; however, the effect of cross-linking ICAM-1 on the surface of airway epithelial cells is currently unknown. The objective of this study was to investigate whether or not cross-linking ICAM-1 on the surface of airway epithelial cells phosphorylated MAP kinases or stimulated chemokine expression and secretion. Methods The human lung adenocarcinoma (A549) cells and primary cultures of normal human bronchial epithelial (NHBE) cells were used in these studies. To increase ICAM-1 surface expression, cultures were stimulated with TNFα to enhance ICAM-1 surface expression. Following ICAM-1 upregulation, ICAM-1 was ligated with a murine anti-human ICAM-1 antibody and subsequently cross-linked with a secondary antibody (anti-mouse IgG(ab')2) in the presence or absence of the MAP kinase inhibitors. Following treatments, cultures were assessed for MAPK activation and chemokine gene expression and secretion. Control cultures were treated with murine IgG1 antibody or murine IgG1 antibody and anti-mouse IgG(ab')2 to illustrate specificity. Data were analyzed for significance using a one-way analysis of variance (ANOVA) with Bonferroni post-test correction for multiple comparisons, and relative gene expression was analyzed using the 2-ΔΔCT method. Results ICAM-1 cross-linking selectively phosphorylated both ERK and JNK MAP kinases as detected by western blot analysis. In addition, cross-linking resulted in differential regulation of chemokine expression. Specifically, IL-8 mRNA and protein secretion was not altered by ICAM-1 cross-linking, in contrast, RANTES mRNA and protein secretion was induced in both epithelial cultures. These events were specifically inhibited by the ERK inhibitor PD98059. Data indicates that ICAM-1 cross-linking stimulates a synergistic increase in TNFα-mediated RANTES production involving activation of ERK in airway epithelial cells. Conclusion Results demonstrate that cytokine induced ICAM-1 on the surface of airway epithelial cells induce outside-inside signaling through cross-linking ICAM-1, selectively altering intracellular pathways and cytokine production. These results suggest that ICAM-1 cross-linking can contribute to inflammation in the lung via production of the chemokine RANTES.</p

    Inhibition of Tumor Necrosis Factor-α–Induced RANTES Secretion by Alkaline Protease in A549 Cells

    No full text
    Pseudomonas aeruginosa is a gram-negative bacterium that is an opportunistic pathogen in patients with cystic fibrosis and in immunocompromised hosts. This bacterium produces a variety of proteolytic enzymes, including alkaline protease (AP), which has multiple biological effects. This study investigated the effects of AP on the A549 pulmonary epithelial cell line. Results demonstrate that AP inhibited tumor necrosis factor (TNF)-α–induced RANTES gene expression and secretion in a concentration-dependent manner. The TNF-α–induced RANTES gene expression and secretion was attenuated with a neutralizing monoclonal antibody directed against the TNF receptor type 1 (TNFR1). Conversely, a neutralizing monoclonal antibody directed against TNF receptor type II had no effect, suggesting that these events were regulated through the TNFR1 receptor. In addition, we observed that soluble TNF receptor type 1 (sTNFR1) levels were significantly increased in culture supernatants of AP-treated cells in a concentration-dependent manner. Finally, membrane-associated TNFR1 was decreased after AP exposures. In these studies, the enzymatically inactive form of AP had no effect on TNF-α–induced RANTES secretion, shedding of sTNFR1, or membrane-associated TNFR1. These results demonstrate that AP stimulates shedding of cell-surface TNFR1, resulting in an increase in sTNFR1. Consequently, these events decrease the cells' ability to stimulate RANTES gene expression and secretion through TNFR1

    Hag Mediates Adherence of Moraxella catarrhalis to Ciliated Human Airway Cells▿ §

    No full text
    Moraxella catarrhalis is a human pathogen causing otitis media in infants and respiratory infections in adults, particularly patients with chronic obstructive pulmonary disease. The surface protein Hag (also designated MID) has previously been shown to be a key adherence factor for several epithelial cell lines relevant to pathogenesis by M. catarrhalis, including NCIH292 lung cells, middle ear cells, and A549 type II pneumocytes. In this study, we demonstrate that Hag mediates adherence to air-liquid interface cultures of normal human bronchial epithelium (NHBE) exhibiting mucociliary activity. Immunofluorescent staining and laser scanning confocal microscopy experiments demonstrated that the M. catarrhalis wild-type isolates O35E, O12E, TTA37, V1171, and McGHS1 bind principally to ciliated NHBE cells and that their corresponding hag mutant strains no longer associate with cilia. The hag gene product of M. catarrhalis isolate O35E was expressed in the heterologous genetic background of a nonadherent Haemophilus influenzae strain, and quantitative assays revealed that the adherence of these recombinant bacteria to NHBE cultures was increased 27-fold. These experiments conclusively demonstrate that the hag gene product is responsible for the previously unidentified tropism of M. catarrhalis for ciliated NHBE cells

    Protein P200 Is Dispensable for Mycoplasma pneumoniae Hemadsorption but Not Gliding Motility or Colonization of Differentiated Bronchial Epithelium

    No full text
    Mycoplasma pneumoniae protein P200 was localized to the terminal organelle, which functions in cytadherence and gliding motility. The loss of P200 had no impact on binding to erythrocytes and A549 cells but resulted in impaired gliding motility and colonization of differentiated bronchial epithelium. Thus, gliding may be necessary to overcome mucociliary clearance
    corecore