2 research outputs found

    Light‐activated carbon monoxide prodrugs based on bipyridyl dicarbonyl ruthenium(II) complexes

    Full text link
    Two photoactivatable dicarbonyl ruthenium(II) complexes based on an amide‐functionalised bipyridine scaffold (4‐position) equipped with an alkyne functionality or a green‐fluorescent BODIPY (boron‐dipyrromethene) dye have been prepared and used to investigate their light‐induced decarbonylation. UV/Vis, FTIR and 13C NMR spectroscopies as well as gas chromatography and multivariate curve resolution alternating least‐squares analysis (MCR‐ALS) were used to elucidate the mechanism of the decarbonylation process. Release of the first CO molecule occurs very quickly, while release of the second CO molecule proceeds more slowly. In vitro studies using two cell lines A431 (human squamous carcinoma) and HEK293 (human embryonic kidney cells) have been carried out in order to characterise the anti‐proliferative and anti‐apoptotic activities. The BODIPY‐labelled compound allows for monitoring the cellular uptake, showing fast internalisation kinetics and accumulation at the endoplasmic reticulum and mitochondria

    Pharmacokinetics of intramuscularly administered thermoresponsive polymers

    No full text
    Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of T-CP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution
    corecore