78 research outputs found

    Spring Forward and Fall Back Dynamics in Formation of Somite Boundaries

    Get PDF
    AbstractOscillating signaling systems mediate the progressive division of mesoderm into segmental units, termed somites. A recent study using time-lapse analysis in living chick embryos has revealed that the process of somite boundary formation relies on a carefully choreographed series of cell movements, which are both unexpected and surprisingly intricate

    BAC Modification through Serial or Simultaneous Use of CRE/Lox Technology

    Get PDF
    Bacterial Artificial Chromosomes (BACs) are vital tools in mouse genomic analyses because of their ability to propagate large inserts. The size of these constructs, however, prevents the use of conventional molecular biology techniques for modification and manipulation. Techniques such as recombineering and Cre/Lox methodologies have thus become heavily relied upon for such purposes. In this work, we investigate the applicability of Lox variant sites for serial and/or simultaneous manipulations of BACs. We show that Lox spacer mutants are very specific, and inverted repeat variants reduce Lox reaction rates through reducing the affinity of Cre for the site, while retaining some functionality. Employing these methods, we produced serial modifications encompassing four independent changes which generated a mouse HoxB BAC with fluorescent reporter proteins inserted into four adjacent Hox genes. We also generated specific, simultaneous deletions using combinations of spacer variants and inverted repeat variants. These techniques will facilitate BAC manipulations and open a new repertoire of methods for BAC and genome manipulation

    Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development

    Get PDF
    AbstractRetinoic acid (RA) signaling plays an important role in determining the anterior boundary of Hox gene expression in the neural tube during embryogenesis. In particular, RA signaling is implicated in a rostral expansion of the neural expression domain of 5׳ Hoxb genes (Hoxb9–Hoxb5) in mice. However, underlying mechanisms for this gene regulation have remained elusive due to the lack of RA responsive element (RARE) in the 5׳ half of the HoxB cluster. To identify cis-regulatory elements required for the rostral expansion, we developed a recombineering technology to serially label multiple genes with different reporters in a single bacterial artificial chromosome (BAC) vector containing the mouse HoxB cluster. This allowed us to simultaneously monitor the expression of multiple genes. In contrast to plasmid-based reporters, transgenic BAC reporters faithfully recapitulated endogenous gene expression patterns of the Hoxb genes including the rostral expansion. Combined inactivation of two RAREs, DE-RARE and ENE-RARE, in the BAC completely abolished the rostral expansion of the 5׳ Hoxb genes. Knock-out of endogenous DE-RARE lead to significantly reduced expression of multiple Hoxb genes and attenuated Hox gene response to exogenous RA treatment in utero. Regulatory potential of DE-RARE was further demonstrated by its ability to anteriorize 5׳ Hoxa gene expression in the neural tube when inserted into a HoxA BAC reporter. Our data demonstrate that multiple RAREs cooperate to remotely regulate 5׳ Hoxb genes during CNS development, providing a new insight into the mechanisms for gene regulation within the Hox clusters

    A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates

    Get PDF
    A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code

    Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa3 in the avian embryo

    Get PDF
    We have investigated the pattern and regulation of Hoxa3 expression in the hindbrain and associated neural crest cells in the chick embryo, using whole mount in situ hybridization in conjunction with DiI labeling of neural crest cells and microsurgical manipulations. Hoxa3 is expressed in the neural plate and later in the neural tube with a rostral border of expression corresponding to the boundary between rhombomeres (r) 4 and 5. Initial expression is diffuse and becomes sharp after boundary formation. Hoxa3 exhibits uniform expression within r5 after formation of rhombomeric borders. Cell marking experiments reveal that neural crest cells migrating caudally, but not rostrally, from r5 and caudally from r6 express Hoxa3 in normal embryo. Results from transposition experiments demonstrate that expression of Hoxa3 in r5 neural crest cells is not strictly cell-autonomous. When r5 is transposed with r4 by rostrocaudal rotation of the rhomobomeres, Hoxa3 is expressed in cells migrating lateral to transposed r5 and for a short time, in condensing ganglia, but not by neural crest within the second branchial arch. Since DiI-labeled cells from transposed r5 are present in the second arch, Hoxa3-expressing neural crest cells from r5 appear to down-regulate their Hoxa3 expression in their new environment. In contrast, when r6 is transposed to the position of r4 after boundary formation, Hoxa3 is maintained in both migrating neural crest cells and those positioned within the second branchial arch and associated ganglia. These results suggest that Hoxa3 expression is cell-autonomous in r6 and its associated neural crest. Our results suggest that neural crest cells expressing the same Hox gene are not eqivalent; they respond differently to environmental signals and exhibit distinct degrees of cell autonomy depending upon their rhombomere of origin

    Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex

    Get PDF
    Connective-tissue growth factor (CTGF) is a member of the CCN family of secreted proteins. CCN family members contain four characteristic domains and exhibit multiple activities: they associate with the extracellular matrix, they can mediate cell adhesion, cell migration and chemotaxis, and they can modulate the activities of peptide growth factors. Many of the effects of CTGF are thought to be mediated by binding to integrins, whereas others may be because of its recently identified ability to interact with BMP4 and TGF?. We demonstrate, using Xenopus embryos, that CTGF also regulates signalling through the Wnt pathway, in accord with its ability to bind to the Wnt co-receptor LDL receptor-related protein 6 (LRP6). This interaction is likely to occur through the C-terminal (CT) domain of CTGF, which is distinct from the BMP- and TGF?-interacting domain. Our results define new activities of CTGF and add to the variety of routes through which cells regulate growth factor activity in development, disease and tissue homeostasis

    Downregulation of FGF Signaling by Spry4 Overexpression Leads to Shape Impairment, Enamel Irregularities, and Delayed Signaling Center Formation in the Mouse Molar.

    Get PDF
    FGF signaling plays a critical role in tooth development, and mutations in modulators of this pathway produce a number of striking phenotypes. However, many aspects of the role of the FGF pathway in regulating the morphological features and the mineral quality of the dentition remain unknown. Here, we used transgenic mice overexpressing the FGF negative feedback regulator Sprouty4 under the epithelial keratin 14 promoter (K14-Spry4) to achieve downregulation of signaling in the epithelium. This led to highly penetrant defects affecting both cusp morphology and the enamel layer. We characterized the phenotype of erupted molars, identified a developmental delay in K14-Spry4 transgenic embryos, and linked this with changes in the tooth developmental sequence. These data further delineate the role of FGF signaling in the development of the dentition and implicate the pathway in the regulation of tooth mineralization. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
    corecore