93 research outputs found
Vernix caseosa peritonitis – no longer rare or innocent: a case series
<p>Abstract</p> <p>Introduction</p> <p>Vernix Caseosa peritonitis is a rare post caesarean section complication with only 19 case reports in the literature to date. Vernix caseosa spilt at the time of caesarean section is thought to incite an inflammatory reaction, causing symptoms resembling an acute abdomen.</p> <p>Case Presentation</p> <p>We discuss three Caucasian patients (aged 32 to 43 years) who presented in our health sector in Sydney with vernix caseosa peritonitis. Each had a protracted course with significant comorbidities requiring surgical and medical intervention. This contrasts with other reports suggesting that a rapid resolution can be expected.</p> <p>This cluster may be a consequence of the rising caesarean section rate, a heightened local awareness of the condition and possibly a result of leaving material in the paracolic gutters intraoperatively.</p> <p>Conclusion</p> <p>Our aim is to increase awareness among our obstetric and surgical colleagues of the characteristic clinical presentation and intra-operative findings of vernix caseosa peritonitis. We also point out that, in contrast to those presented here, not all patients require laparotomy.</p
N-Terminal Arginines Modulate Plasma-Membrane Localization of Kv7.1/KCNE1 Channel Complexes
BACKGROUND AND OBJECTIVE: The slow delayed rectifier current (I(Ks)) is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks) and atrial fibrillation (a human arrhythmia). Structure-function relationship of the KCNE1 N-terminus for I(Ks) modulation is poorly understood and was subject of this study. METHODS: We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines) at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS: All KCNE1 constructs physically interacted with Kv7.1. I(Ks) resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA') were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'). Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS: The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks). Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex
Reduced response to IKr blockade and altered hERG1a/1b stoichiometryin human heart failure
Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably
due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic
changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents.
Thus,we aimed to examinewhether decreased expression of the rapid delayed rectifier potassiumcurrent, IKr, contributes
to repolarization abnormalities in human HF. Tomap functional IKr expression across the left ventricle (LV),
we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge
preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the
IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in
APD80 post-IKr blockade relative to baseline APD80 (ΔAPD80) and found that ΔAPD80s are reduced in failing versus
donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium,
respectively (p = 0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels
using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between
donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer
simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions.
Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongationwas greater
in normal conditions than in failing conditions, provided that the cellularmodel of HF included a significant downregulation
of IKr. In humanHF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression.
This attenuated functional response is associated with altered hERG1a:hERG1b protein stoichiometry in the
failing human LV, and failing cardiomyoctye simulations support the experimental findings. Thus, of IKr protein
and functional expression may be important determinants of repolarization remodeling in the failing human LV.We thank the Translational Cardiovascular Biobank & Repository (TCBR) at Washington University for provision of donor/patient records. The TCBR is supported by the NIH/CTSA (UL1 TR000448), Children's Discovery Institute, and Richard J. Wilkinson Trust. We also thank the laboratory of Dr. Sakiyama-Elbert for the use of the StepOnePlus equipment We appreciate the critical feedback on the manuscript by Dr. Jeanne Nerbonne. This work has been supported by the National Heart, Lung & Blood Institute (NHLBI, R01 HL114395). K. Holzem has been supported by the American Heart Association (12PRE12050315) and the NHLBI (F30 HL114310).Holzem, KM.; Gómez GarcÃa, JF.; Glukhov, AV.; Madden, EJ.; Koppel, AC.; Ewald, GA.; Trénor Gomis, BA.... (2016). Reduced response to IKr blockade and altered hERG1a/1b stoichiometryin human heart failure. Journal of Molecular and Cellular Cardiology. 96:82-92. https://doi.org/10.1016/j.yjmcc.2015.06.008S82929
Differential Association between HERG and KCNE1 or KCNE2
The small proteins encoded by KCNE1 and KCNE2 have both been proposed as accessory subunits for the HERG channel. Here we report our investigation into the cell biology of the KCNE-HERG interaction. In a co-expression system, KCNE1 was more readily co-precipitated with co-expressed HERG than was KCNE2. When forward protein trafficking was prevented (either by Brefeldin A or engineering an ER-retention/retrieval signal onto KCNE cDNA) the intracellular abundance of KCNE2 and its association with HERG markedly increased relative to KCNE1. HERG co-localized more completely with KCNE1 than with KCNE2 in all the membrane-processing compartments of the cell (ER, Golgi and plasma membrane). By surface labeling and confocal immunofluorescence, KCNE2 appeared more abundant at the cell surface compared to KCNE1, which exhibited greater co-localization with the ER-marker calnexin. Examination of the extracellular culture media showed that a significant amount of KCNE2 was extracellular (both soluble and membrane-vesicle-associated). Taken together, these results suggest that during biogenesis of channels HERG is more likely to assemble with KCNE1 than KCNE2 due to distinctly different trafficking rates and retention in the cell rather than differences in relative affinity. The final channel subunit constitution, in vivo, is likely to be determined by a combination of relative cell-to-cell expression rates and differential protein processing and trafficking
14-3-3 amplifies and prolongs adrenergic stimulation of HERG K(+) channel activity
Acute stress provokes lethal cardiac arrhythmias in the hereditary long QT syndrome. Here we provide a novel molecular mechanism linking β-adrenergic signaling and altered human ether-a-go-go related gene (HERG) channel activity. Stress stimulates β-adrenergic receptors, leading to cAMP elevations that can regulate HERG K(+) channels both directly and via phosphorylation by cAMP-dependent protein kinase (PKA). We show that HERG associates with 14-3-3ε to potentiate cAMP/PKA effects upon HERG. The binding of 14-3-3 occurs simultaneously at the N- and C-termini of the HERG channel. 14-3-3 accelerates and enhances HERG activation, an effect that requires PKA phosphorylation of HERG and dimerization of 14-3-3. The interaction also stabilizes the lifetime of the PKA-phosphorylated state of the channel by shielding the phosphates from cellular phosphatases. The net result is a prolongation of the effect of adrenergic stimulation upon HERG activity. Thus, 14-3-3 interactions with HERG may provide a unique mechanism for plasticity in the control of membrane excitability and cardiac rhythm
- …